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Abstract of the Dissertation

Linear and Non Linear Studies at RHIC Interaction Regions and

Optical Design of the Rapid Cycling Medical Synchrotron

by

Javier Fernando Cardona

Doctor of Philosophy

in

Physics

State University of New York

at Stony Brook

2003

Development and application of the action and phase technique used to

evaluate and correct local errors, linear and non linear (skew quadrupole errors,

gradient errors and sextupole errors), at RHIC interaction regions is presented

in the first part of this thesis.

The skew quadrupole errors have their origin on the roll angles of the

quadrupoles. It is then possible to estimate the skew quadrupole error present

in a RHIC triplet if all the roll angles of the quadrupoles of a particular triplet

are known. These values were estimated with the measured roll angles dur-

ing the 2002 RHIC shutdown period and compared to the measured skew

quadrupole errors obtained with the action and phase technique. The agree-

ment is fairly good validating the action and phase technique for at least skew
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quadrupole errors.

Another way of validating the action and phase technique is by intention-

ally introducing known values of errors while attempting to measure the values

with the technique. This was done for skew quadrupole errors and gradient

errors with excellent results. Analysis of some of the experiments shows that

the set errors can be reproduced by the technique with accuracies below 5

percent. Same experiments were repeated for sextupole errors an a clear cor-

relation between the measured and the set error was found but the precision

in this case is not as good as for the linear errors case.

The optical design of the Rapid Cycling Medical Synchrotron and re-

lated efforts to optimize the design are presented in the second part of this

thesis. An interesting outcome of this work is the development of the so

called IBEFUMFO technique which allow a better understanding of the opti-

cal parameters involved in a lattice design and hence facilitate the task of the

designer.

The rapid repetition frequency of the RCMS has raised concerns about

the sextupole components induced in the beam due to strong Eddy currents.

Tracking simulations with Marylie have been done in order to evaluate the

effect of these sextupoles in quantities like the dynamic aperture and the foot-

print of the accelerator.
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Preface

Part I: Linear and Non Linear Studies at RHIC

Interaction Regions

One of the fundamental quantities of an accelerator is the luminosity.

The interaction regions or the places where the experiments are placed in the

accelerator should be designed to maximize the luminosity. From the optical

point of view, this means that the beam must be as small as possible at the

interaction point. This can be achieved by a special group of magnets placed

at each side of the interaction point. These magnets have relatively high

magnetic fields when compared with the regular magnets used in other places

of the accelerator. As a consequence, any misalignment of the interaction

region magnets as well as any defect in their magnetic fields have a bigger

impact in the performance of the accelerator than misalignments or defects in

the regular magnets. Traditionally, global correction methods have been used

to correct for the errors all around the ring with satisfactory results in most

of the cases. However when strong errors are localized in particular places like

the interaction regions the global compensation methods are less robust and



difficult to implement during machine operation.

In order to circumvent this problem, accelerator like RHIC and the LHC

have implemented packages of multipole correctors in the interaction regions

to perform local compensation besides the traditional global compensation

methods.

The values at which these local corrector must be set are expected to be

determined by either magnetic measurements or beam based measurements.

The beam based measurements are preferred over the magnetic measure-

ments because the first ones allow to evaluate the field errors under the current

conditions of the machine. Several techniques have been proposed to perform

the error measurements based on beam observables and such techniques are

currently under development. The first part of this thesis show the devel-

opment and implementation of the orbit action jump technique to measure

local coupling errors, gradient errors and nonlinear errors at the interaction

regions. This technique has been successfully used in RHIC to compensate lo-

cal coupling errors at the interaction regions and there are solid experimental

evidences that this technique can precisely evaluate integrated gradient errors

at RHIC interaction regions.

Chapter 1 introduces some elementary concepts in accelerator physics that

will be used throughout this thesis. Even though most of the results shown in

this Chapter are well known in the field there are few results that were derived

during the course of this work and that are fundamental for the results shown

in the next chapters. Chapter 2 describes the basics of the orbit action jump



technique, its application to RHIC and some results that help to identify the

Interaction Regions as the source of linear coupling during the 2000 run.

The quantitative determination of skew quadrupole errors from the action

and phase variables obtained from first turn orbit analysis is presented in

Chapter 3. Since the ultimate goal of the error measurements is to set up

the correctors it is neccesary to introduce in this chapter the local correction

system implented in some of the RHIC interaction regions.

Chapter 4 describes the local correction done during the RHIC 2001 run

where the estimates for skew quadrupole errors done in the previous Chapter

were used. Comparisons with the Orbit Bump method and evaluation of

the minimum tune separation (a method widely used for coupling evaluation)

indicates that the correction was successfully performed.

The action and phase analysis is extended to closed orbits in Chapter 5.

A general method that precisely evaluates linear errors and that can be easily

extended to measure nonlinear errors is also shown for the first time in this

Chapter. Different species (protons and gold ions) are used to evaluate the

errors. Comparisons between the errors found during the 2000 RHIC run (

Chapter 3) and the ones found during the 2001 run (this Chapter) are pre-

sented at the end of the chapter. During the the 2002 shutdown period the

roll angles of some of the quadrupole of the triplets were measured. These

measurements allowed the direct comparison of the skew quadrupole error

measurements done in the previous chapters with the skew errors calculated

directly from the measured angles. The results of this comparison (shown in



Chapter 6) is completely positive strongly validating the orbit based measure-

ments. The general method to evaluate linear error presented in Chapter 5 is

extended to include also non linear errors in Chapter 7. Results of some of

the experiments performed during the 2001 RHIC run suggest that it might

be possible to extract at least sextupole component errors with the method

presented in this Chapter.

The calibration Chapter (Chapter 8) the estimated values from the orbit

values for known values of skew quadrupole strengths, gradient errors and

normal sextupole strengths. The correspondence between the measured and

the set values of skew and gradient errors is excellent (below 5%). For the

sextupole case there is a clear correlation between measured and set values but

the precision of the measurements is not as good as for the linear case. Further

studies and experimentation are needed to identify the sources of errors in this

case. Chapter 9 is a brief description of the code and associated subroutines

that were written to extract the action and phase variables from the orbit

measurements, software for quantitative analysis, orbit preprocessing, etc.

Part II: Optical Design of the Rapid Medical

Synchrotron (RCMS)

The Rapid Cycling Medical Synchrotron was initially conceived at FER-

MILAB in 1992 and after the University of Pennsylvania shows serious in-

tentions of acquiring a proton therapy facility, a collaboration with center at

Brookhaven National Laboratory (BNL) was established between Advanced



Energy Systems (AES), Lawrence Berkeley Laboratory (LBL), Stony Brook

University, ACCEL in Germany and BNL. The output of this collaboration

was initially a preconceptual design in 1999, an internal review in January of

2002 and a conceptual design in March of 2003.

This part of the thesis is the contribution to the RCMS collaboration in

the optical design and associated efforts to reduce the cost of the facility.

Chapter 11 is a brief introduction to proton therapy. The general re-

quirements and the design choices of the RCMS are explained in detail in

Chapter 12.

One of the interesting outcomes of the optical design of the RCMS was

the development of the so called IBEFUMFO technique which became an im-

portant tool for optimization. The principle and development of this technique

is explained in Chapter 13.

The whole optic design is presented in Chapter 14. It includes the optical

design of the ring, delivery lines, the gantry optical interface: a special optical

device developed for the RCMS, the injection and extraction systems, applica-

tions of the IBEFUMFO technique and comparisons with other accelerators.

The effect of the eddy currents due to the fast repetition frequency of the

RCMS is discussed in Chapter 15. These studies are aimed to determine if

sextupole correctors are needed in the accelerator.



Acknowledgments

I consider myself very fortunate of having landed in the collider accelerator

department at Brookhaven National Laboratory for my doctoral research. It

is a very active place with plenty of possibilities for research and with an

excellent scientific staff. I personally benefit from the interaction with many

of the scientists of the department to whom I would like to thank.

I’m very thankful to Todd Satogata for helping me to start up with my

equipment, for help on the beam experiments done at RHIC and for continu-

ously solving many of my computer related problems.

I want to express my appreciation to Vadim Ptitsyn with whom I team

up to do the linear studies at RHIC Interaction Regions and with whom I

held frequent conversations that allow me to move easily in my RHIC studies.

Dan T Abell did also a significant contribution to my research. He sat down

with me for several weeks and introduce me to Marylie, the simulation program

based on Lie Algebra developed by Alex Dragt, thesis advisor of Dan during his

graduate studies. I particularly enjoy many of the conversations that we had

about non linearities in accelerators and its connection with Marylie. I’m in

debt with Dan for the precious help received on the research of Eddy currents



in the RCMS which is presented on Chapter 15.

I have the opportunity to interact with Kip Gardner, particularly in the

optics design of the RCMS lattice. This design was in part shaped by his

valuable comments and the pressure he was putting to improve his design of

the injection and extraction systems. I owe to him the sections of injection

and extraction presented on Chapter 14 of this dissertation. Jorg Kewisch

Steve Peggs and I sat down in several occasions to discuss the many issues of

the RCMS lattice. I collected many good ideas from that discussions and I

also obtained several software tools developed by Jorg to assist lattice design.

I found these tools very useful in the lattice design of the RCMS.

Many thanks to Fulvia Pilat for the space that she gave to perform my

experiments in the beam experiments section that she coordinates and for the

many opportunities I had to show my work in her weekly meeting. I also

appreciated the confidence she put on me to present the RHIC Interaction

Region Studies in the 2001 snowmass conference.

Many Thanks to Dejan Trbojevic that also allow me to show my work

several times in the commissioners meeting, provide me with critical data

about the rolls of the quadrupoles at the Interaction Regions and stimulated

the work related with RHIC that I present in this dissertation.

Many Thanks to Steven Tepikian who helped me to solve several MAD re-

lated problems and RHIC lattice related problems. Many Thanks to Johannes

Van Zeijts for the assistance given to plan several of the beam experiments

presented in this dissertation. I also want to thank all the administrative



staff specially Mary Campbell, Marion Heimerle and Gladys Blas who always

attend promptly all my required paper work for travels, housing ,etc.

I also want to express my gratitude and appreciation to Ray Fliller and

Vajid Ranjbar my former officemates with whom I interchange all spectrum

of ideas, physics related and non physics related making my days at the office

more enjoyable. I also found valuable the company and input of my later

officemates Ubaldo Iriso and Rama Calaga.

Many thanks to Rogelio Tomás Garćıa who made valuable comments in
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Chapter 1

Basic Accelerator Optics

1.1 Introduction

The acceleration of particles usually requires the confinement of the par-

ticles in a small space generically called beam. Confinement of the beam is

usually achieved by dipole and quadrupole magnets placed in a configuration

called strong focusing. The dipole magnets define the ideal orbit of the par-

ticle while the quadrupole magnets keep the beam focused and as close as

possible to the ideal orbit. Dipole magnets have a constant vertical magnetic

field (Fig. 1.1 a)) that produces a force that bends the particle in the hori-

zontal plane. Quadrupole magnets (Fig. 1.1 b)) produce magnetic fields that

vary linearly with the position of the beam with respect to the center of the

quadrupole. Such magnetic fields are characterized by a constant B ′ called the

magnetic gradient. Dipole magnets also have quadrupole components which

can focus the beam either horizontally or vertically. In a sector bend magnet

(see Fig. 1.2) for example, there is a net horizontal quadrupole effect. This is

1



N

S

Dipole

x

Quadrupole

S N

N S

y

x

y

a) b)

Figure 1.1: a) Schematic of the dipole magnet. b) Schematic of the quadrupole
magnet.

due to the fact that particles that enter the magnet at different heights respect

the central line of the magnet travel different distances inside the magnet.

Vertical quadrupole effects are produced by the irregular pattern of the

magnetic field at the edge of the magnet (see Fig. 1.3). This effect appears

only when α, the angle between the magnet’s end face and the perpendicular

to the beam direction, is different from zero (see Fig. 1.3). The focusing system

of the first accelerator was based on this effect giving place to what is know

as weak focusing.

Strong quadrupoles can also be added to a dipole by tilting the inner faces

2



Trajectory A

Trajectory B

Figure 1.2: Trajectory A remains inside the magnet for a longer length and
hence this trajectory is more bended than trajectory B. The net effect is that
the trajectories A and B approach to each other after they pass the magnet
(focusing effect).

of the magnet like shown in Fig. 1.4. These magnets are known as combined

function magnets and they can be generally found in small accelerators.

1.2 Equations of Motion

This section contains a mathematical description of the particles in a

strong focusing accelerator with specific mathematical derivations that are

used in the analysis of some of the experiments described in this thesis work.

The reference frame chosen for the study of the motion, Fig. 1.5, is also

found in [2], although the mathematical derivation here is slightly different.

3
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Figure 1.3: Focusing by the longitudinal fringe field in dipoles. a) Magnetic
field lines on the plane perpendicular to the bending plane. b) Magnetic field
in the bending plane.
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Figure 1.4: Combined function magnets are dipole magnets with a quadrupole
component created by tilting the magnet faces.

The motion is generally divided into longitudinal and transverse components.

The longitudinal motion is described by the axial coordinate “s” while the

transverse motion is described by the “x” and “y” coordinates. The lon-

gitudinal motion depends mainly on radio frequency (RF) cavities used for

acceleration while the transverse motion depends on the magnetic optics of

the accelerator. In this section, only transverse motion will be described. To

simplify the algebra, the equations will be written from the non-inertial refer-

ence frame x y s which requires to add a centrifugal force in the +x direction

5
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Figure 1.5: Frame of reference for equation of motion.

(see equation 6.20 in [3]). The equations of motion are then:

d~p

dt
= q~v × ~B + ~Fcentrifugal (1.1)

Where the q is the charge of the particle, v its longitudinal velocity and ~B a

generic magnetic field. Horizontal and vertical components of Eq. 1.1 are:

d

dt
(γm

dx

dt
) = −qvBy + Fcentrifugal

(1.2)

d

dt
(γm

dy

dt
) = qvBx

6



where m is the mass of the particle and if only dipole and quadrupole magnetic

fields are assumed and no radiation effects are considered (γ is constant), it

follows from Eq. 1.2 that:

γm
d2x

dt2
= −Byvq + γm

v2

ρ + x

(1.3)

γm
d2y

dt2
= Bxvq

where Bx is the horizontal component of the magnetic field, By is the vertical

component of the magnetic field, v is the longitudinal velocity of the particle,

ρ is the radius of the central orbit, and q is the charge of the particle.

Eq. 1.3 must be given as function of the azimuthal coordinate s rather

than the time t. The following relations can be extracted from Fig. 1.6:

ds = ρdθ

(1.4)

vdt = (ρ+ x)dθ

which lead to:

ds = ρdθ = vdt
ρ

ρ+ x
(1.5)

where v is the velocity of the particle along s. Here we assumed that the

transverse velocities are very small when compared with v. It is now necessary

to express the derivatives of time as derivatives of s. The chain rule of the

calculus allow us to write:

d2x

dt2
=

(

ds

dt

)2
d2x

ds2
+
d2s

dt2
dx

ds

7
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Figure 1.6: Comparison of reference orbit path length ds and particle path
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=

(

vρ

ρ+ x

)2
d2x

ds2
+
dx

ds

vρ

ρ + x

dx

dt
(1.6)

=





d2x

ds2
+

(

dx

ds

)2




(

vρ

ρ+ x

)2

where Eq. 1.5 has been used to obtain the first and second derivative of s vs t.

The quadratic term in Eq. 1.7 can be ignored since dx
dt

is a small quantity.

In such case:

d2x

dt2
=
d2x

ds2

(

vρ

ρ+ x

)2

(1.7)
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Similarly for the y plane we have:

d2y

dt2
=
d2y

ds2

(

vρ

ρ + x

)2

(1.8)

Replacing Eq. 1.7 and Eq. 1.8 in Eq. 1.3 and assuming that x2 is negligible

respect ρ2 we have:

d2x

ds2
+

1

ρ2
x +

1

Bρ
(By − B0) = 0

(1.9)

d2y

ds2
− Bx

Bρ
= 0

where B0 is the dipole magnetic field that only have a vertical component and

Bρ is what is known as the magnetic rigidity and it is defined by:

Bρ =
γmv

q
(1.10)

The magnetic fields can be expressed in function of the quadrupole gradients:

Bx(s) = B′(s)y

(1.11)

By(s) − B0 = B′(s)x

Using these results in Eq. 1.9 we have:

d2x

ds2
+

[

1

ρ2
+
B′(s)

Bρ

]

x = 0

(1.12)

d2y

ds2
− B′(s)

Bρ
y = 0

9



Both differential equations horizontal and vertical can be generically written

as:

z′′ +Kz(s)z = 0 (1.13)

where z′′ = d2z
ds2 and z can be either x or y. Eq. 1.13, generally called Hills

equation, is similar to the harmonic oscillator equation except that Kz, the

spring constant, depends on the azimuthal coordinate s. Transverse motion

described by Eq. 1.13 is usually known as betatron motion.

1.3 Solution to Betatron equations

Since Eq. 1.13 resembles the harmonic oscillator equation with a variable

spring constant it is natural to propose a solution of the form:

x(s) = Aw(s) sin[ψ(s) + δ]. (1.14)

Substitution of this solution in the Hills equation leads to equations that relate

ψ(s) and w(s):

ψ′ =
k

w(s)2
,

(1.15)

w3(w′′ +Kw) = k2

where k is a constant of integration. The solution of these equations gives

a complete description of the transverse motion of a single particle. Usually

w(s) and its derivative are written in terms of the so called Courant-Snyder

10



parameters [1]:

β(s) ≡ w2(s)

k
,

α(s) ≡ −1/2
dβ(s)

ds
= −1/2

d

ds

(

w2(s)

k

)

, (1.16)

γ(s) ≡ 1 + α2

β
.

The solution of the equations of motion with the above definitions now has

the form:

x(s) =
√

2Jβ(s) sin[ψ(s) + δ] (1.17)

where J and δ are constant of motion that depend on the initial conditions.

The constant J is usually referred as the action of the motion.

Eq. 1.17 can also be used to describe the motion of the beam envelope of

a bunch of particles. In such a case the amplitude of the oscillation is related

with the beam size σ by the equation:

σ =
√

εβ =
√

< J > β (1.18)

where the emittance of the beam ε has been defined as the average action of

all particles within the bunch.

1.4 Matrix Formalism of the Betatron Mo-

tion

It is common to find problems in which a particle starting with phase space

coordinates x0 and x′0 goes trough a beam line and the final space coordinates

11



must be determined. The turn by turn matrix T is a very useful tool to solve

those kind of problems. In general, T can be written as:
(

x
x′

)

s0+C

= T

(

x
x′

)

sO

(1.19)

=

(

cos ∆ψC + α sin ∆ψC β sin ∆ψC

−γ sin ∆ψC cos ∆ψC − α sin ∆ψC

)(

x
x′

)

sO

where ∆ψC is usually expressed as 2πQ0 where Q0 is the tune of the machine.

Beam lines are usually divided in small parts each of one is characterized by

its own matrix Mi. The total Matrix T for a beam line containing n elements

line can then be written as:

T = Mn...Mi...M0. (1.20)

Some of the typical M matrices are:

Mdrift =

(

1 L
1 0

)

(1.21)

for a drift of length L and

Mquad =

(

1 0
kl 1

)

(1.22)

for a short quadrupole of integrated strength kl.

As example we will calculate the tune shift ∆Q that a thin quadrupole

gradient error kl produces on an otherwise perfect lattice. The stability con-

ditions in the tunes will also be discussed. The optical matrix for a lattice

perturbed by a thin quadrupole gradient error kl is given by [20]:

T =

(

cos 2πQ0 + α sin 2πQ0 β sin 2πQ0

−γ sin 2πQ0 cos 2πQ0 − α sin 2πQ0

)(

1 0
kl 1

)

(1.23)
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or

T =

(

cos 2πQ0 + α sin 2πQ0 + βkl sin 2πQ0 β sin 2πQ0

−γ sin 2πQ0 + kl(cos2πQ0 − α sin 2πQ0) cos 2πQ0 − α sin 2πQ0

)

.

(1.24)

Linear stability of the particle motion can be inferred from the trace of

this matrix. Stability is ensured when [21] :

−1 ≤ 1

2
TrT ≤ 1, (1.25)

or

| cos 2πQ0 +
1

2
βkl sin 2πQ0| = | cos 2π(Q0 + ∆Q)| ≤ 1 (1.26)

where (Q0 + ∆Q) is the tune value for the perturbed machine. The term

1/2βkl sin 2πQ0 can make this inequality invalid, especially for values of Q0

very close to one or a half integer. The machine is then in an unstable state

known as the half integer resonance. If the tune shift ∆Q is small then,

cos 2π(Q0 + ∆Q) ' cos 2πQ0 − 2π∆Q sin 2πQ0 (1.27)

and then,

∆Q = − 1

4π
βkl. (1.28)

The effect of several small gradient deviations can be written as:

∆Q = − 1

4π

∑

i

(β)i(kl)i. (1.29)

Eq. 1.20 can also be written for values of s different to s0 + C (see for

example [2]):

T (s0− > s1) =

13



(1.30)






√

β1

β1

cos ∆ψ + α0 sin ∆ψ
√
β0β1 sin ∆ψ

−1+α0α1√
β1β0

sin ∆ψ + α0−α1

β1β0

cos ∆ψ
√

β0

β1

(cos ∆ψ − α2 sin ∆ψ)





 .

A problem of initial conditions that can be easily solved with the matrix

formulation is when the beam is disturbed by a magnetic kick ∆x′ relative

to the design trajectory. In such a case x(s0) = 0 and x′(s0) = ∆x′ which

together with Eq. 1.31 leads to:

x(s) = ∆x′
√

β(s0)β(s) sin (ψ(s) − ψ(s0)) (1.31)

where s0 is the place at which the ∆x′ is located. Eq. 1.31 is the basis for

analysis of first turn orbits as we will see in the following chapters.

1.5 Magnet Errors and Closed Orbits

In circular accelerators, magnet errors like misalignments or magnetic field

errors produces a net displacement of the so called closed orbit, a special orbit

that closes in itself and around which the particles oscillate. Ideally the closed

orbit corresponds to the design trajectory of the accelerator (usually x(s) = 0

and y(s) = 0). However, magnetic errors separate the design trajectory from

the closed orbit in a way that can be predicted with the following equation:

x′′ +Kx(s)x = −∆By(s)

Bρ

= (1.32)

y′′ +Ky(s)y =
∆Bx(s)

Bρ

14



where ∆Bx(s) and ∆By(s) are the errors of the magnetic field in the horizontal

and the vertical plane with respect to the design values. Eq. 1.32 can be easily

inferred from Eq. 1.9.

In general, ∆By(s) and ∆Bx(s) can have normal multipolar components

an and skew multipolar components bn as indicated in the following equation.

∆B′

x − i∆B′

y = B0

∞
∑

0

(bn + ian)(x + iy)n. (1.33)

The usual problem in the machine optics is to have some few significant

magnetic errors each with an effective length ∆l much smaller than the total

ring length. This allows to write the magnetic errors as delta Dirac functions

as follows:

x′′ +Kx(s)x = −
∑

i

δ(si)
∆B(si)

Bρ
∆l =

∑

i

δ(si)∆x
′(si) (1.34)

where si are the positions where the magnetic errors are localized ∆l is the

length of the magnet and ∆x′(si) represent the magnetic kicks at each si posi-

tion. The magnetic kick ∆x′ in general depends on x(si) and y(si) according

to Eq. 1.33.

Notice that when si < s < si+1 Eq. 1.34 is equal to Eq. 1.13 and hence the

beta functions found for the lattice without errors should also satisfy Eq. 1.15

which in turn means that the beta functions found for the lattice without errors

can be used to model the real orbit in the intervals defined by the magnetic

errors. This is valid despite the fact that errors might change the closed orbit

beta functions.
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The general solution of Eq. 1.34 will be shown here for the case when only

1 magnetic error ∆x′(x0, y0) is present.

The natural ansatz solution for Eq. 1.34 is Eq. 1.17. Since we are looking

for a periodic solution equation (x(ψ(s0)) = x(ψ(s0) + 2πQ)) and assuming

ψ(s0) = 0 we have:

cos(−δ) = cos(2πQ− δ). (1.35)

One of the solutions of this equation lead to δ = πQ. The other solution has
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Figure 1.7: Betatron orbit with magnetic error at s = 0. It is shown that
x′(s0 − ε) = x′(s0 − ε + 2πQ)
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an additional term 2kπ where k is any integer number. The constant
√

2J can

be found by first integrating Eq. 1.34 in the interval s0 − ε and s0 + ε where ε

is and infinitesimally small number,

s0+ε
∫

s0−ε

x′′ds+

s0+ε
∫

s0−ε

K(s)xds =

s0+ε
∫

s0−ε

δ(s0)∆x
′(x0, y0)ds. (1.36)

After doing the integration we have:

lim
ε→0

(x′(s0 + ε) − x′(s0 − ε)) = ∆x′(x0, y0) (1.37)

where x′(s0 + ε) is a limit coming from the right hand side and can be easily

evaluated using the ansatz solution,

lim
ε→0

x′(s0 + ε) = −
√

2J
√

β(s0)

[

1

2
cos(2πQ) − sin(πQ)

]

, (1.38)

x′(s0 − ε) on the other hand is a limit coming from the left hand side. In this

case ψ(s) must be changed to ψ(s) + 2πQ (see Fig. 1.7) and then we have:

lim
ε→0

x′(s0 − ε) = −
√

2J
√

β(s)

[

1

2
cos(πQ) + sin(πQ)

]

. (1.39)

Substituting the previous results in Eq. 1.37 it is possible to find the constant

of the motion
√

2J 1 as function of known parameters.

√
2J =

∆x′(x0, y0)
√
β

2 sin(πQ)
(1.40)

which finally allows us to write the closed orbit equation as:

x(s) =
∆x′(x0, y0)

√
β

2 sin(πQ)
cos(ψ(s) − πQ) (1.41)

1In this case J is a constant only in the intervals defined by the errors
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In general Eq. 1.41 should be written as:

x(s) =
∆x′(x0, y0)

√
β

2 sin(πQ)
cos(|ψ(s) − ψ(s0)| − πQ) (1.42)

where ψ(s0) is the phase advance at the place where the magnetic kick ∆x′ is

located.

If there is more than one magnetic kick in the ring the total closed orbit

can be written as:

x(s) =
∑

i

∆x′(xi, yi)
√

β(s)

2 sin(πQ)
cos(|ψ(s) − ψ(si)| − πQ) (1.43)

1.6 Quadrupole or Linear Errors

Magnetic errors in an accelerator machine can be classified as dipole er-

rors, quadrupole errors, sextupole errors and so on. The most common and

stronger errors are usually the dipole and quadrupole errors. This dissertation

is mainly concern with quadrupole errors ( we will also refer to them as linear

errors) and they will be discussed in some detail in the following paragraphs.

There are 2 kinds of linear errors: normal gradient errors and skew

quadrupole errors. Gradient errors appear for example when the real mag-

netic field of a quadrupole magnet is different from the design value. Skew

quadrupole errors appear when the quadrupole magnets are rolled about a

longitudinal axis.

Gradients errors have undesirable effects like tune shifts already discussed

in Section 1.4. Tune shifts can drive the machine to the so called tune reso-
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nances. Such tune resonances are predicted by Eq. 1.32 and they are basically

tunes at which the beam amplitude grows without limit.

Another unwanted effect of the gradient errors is the so called beta-beat

modulation which consist of oscillations of the beta functions over-imposed

to the design beta functions. The most common effect of skew quadrupole

errors is the so called linear coupling. Linear coupling can also be produced

by solenoidal fields like the ones present in the experimental detectors. In the

following sections we will briefly review all the mentioned effects.

1.7 Beta-Beat Modulation

The variation of the beta functions in the ring due to quadrupole gradient

errors ∆k can be predicted with the formula:

∆β(s) = ± β(s)

2 sin πQ0

∫ s+C

s
∆k(σ)β(σ) cos 2[|µ(σ) − µ(s)| − πQ0]dσ (1.44)

A deduction of this equation can be seen for example in [22]. There the lattice

is divided in 2 segments. One segment that goes from the observer position s

to the quadrupole error and other segment that goes from the quadrupole error

position back to the observer. Three matrices can then be used to completely

describe the lattice, one for each segment and the third for the quadrupole

error. Comparison of the resultant matrix with general form matrix in function

of the Courant Snyder parameters lead to Eq. 1.44.

Notice from Eq. 1.44 that a single quadrupole error can affect the beta

functions all around the ring. Even though that is a valid mathematical de-
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scription of the effect of a quadrupole error in an optical lattice this description

usually lead to complicated mathematical analysis.

Section 1.5 showed that it was possible to describe the particle orbit be-

tween errors while still using the unperturbed beta functions. This alternate

mathematical approach significantly simplifies the error lattice description, as

will be shown in the next chapters.

1.8 Linear Coupling

In principle, betatron oscillations in both transverse planes are indepen-

dent of each other. However, rotated quadrupoles fields due to misalignment

and occasionally solenoidal fields associated with high energy experiments can

lead to some degree of coupling.

1.8.1 Coupling from Rotated Quadrupoles

In order to understand how the coupling arises in rotated quadrupoles I

first analyze how the slope of the orbit (x’ or y’) will change after crossing a

quadrupole. According to Fig. 1.8 the geometrical relations between ∆x′, the

angular deflection of the orbit respect its design orbit, ∆l , the length of the

magnet, and ρ, the radius of curvature of the trajectory through the magnetic

field, is found to be:

∆x′ = −∆l

ρ

(1.45)
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∆y′ =
∆l

ρ

where the thin lens approximation has been used. The sign difference in the

two expressions is a consequence of the direction of the magnetic forces in a

quadrupole as can be seen in Fig. 1.9. Fig. 1.9 shows that while a particle in

a positive horizontal position experiences a kick in the −x direction a particle

in a positive vertical position experiences a kick in the +y direction.

Eq. 1.45 together with Eq. 1.10 lead to:

∆x′ = −qBy∆l

p

(1.46)

∆y′ =
qBx∆l

p

where we have used the condition of equilibrium for a particle with charge e

moving through an arc of radius ρ with momentum p in a magnetic field.

The components of a magnetic field of a perfect aligned quadrupole are

given by:

Bx = B′y

(1.47)

By = B′x

If the quadrupole is rotated about a longitudinal axis by an angle φ the new

expressions of the magnetic field are given by:

Bx = B′ (y cos(2φ) − x sin(2φ))
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(1.48)

By = B′ (x cos(2φ) + y sin(2φ))

Using the definition for magnetic rigidity in Eq. 1.10 and Eq. 1.49:

∆x′ = −By∆l

Bρ
= −B

′∆l

Bρ
(x cos(2φ) + y sin(2φ))

(1.49)

∆y′ =
Bx∆l

Bρ
=
B′∆l

Bρ
(y cos(2φ) − x sin(2φ))

Under the assumption that φ is a small angle the following relations can be

obtained :

∆x′ = −B
′∆l

Bρ
(x+ 2φy)

(1.50)

∆y′ =
B′∆l

Bρ
(y − 2φx)

This Equation give the total magnetic kick that a particle experiences when

it goes through the quadrupole. Such magnetic kick has two major sources:

the gradient of the quadrupole itself and the induced kick from the opposite

plane due to the roll of the quadrupole. The gradient of the quadrupole can

be divided between a design gradient,
B′

0
∆l

Bρ
, and a gradient error, B′

err∆l

Bρ
. It is

then possible to write:

∆x′ = −
(

B′

0∆l

Bρ
+
B′

err∆l

Bρ

)

(x + 2φy)

∼= −
(

B′

0∆l

Bρ
+
B′

err∆l

Bρ

)

x− B′

0∆l

Bρ
2φy
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(1.51)

= ∆x′0 −
B′

err∆l

Bρ
x− B′

0∆l

Bρ
2φy

= ∆x′0 − B1x + A1y

and similarly,

∆y′ ∼= ∆y′0 +
B′

err∆l

Bρ
y − B′

0∆l

Bρ
2φx

(1.52)

= ∆y′0 +B1y + A1x

where

∆x′0 = −B
′

0∆l

Bρ
x

(1.53)

∆y′0 =
B′

0∆l

Bρ
y

A1 = −2B′∆sφ

Bρ
(1.54)

B1 =
B′

err∆s

Bρ
(1.55)

Terms of second order are neglected in Eq. 1.51 and Eq. 1.52.

Error analysis in this work involved the determination of ∆x′ − ∆x′0 and

∆y′ −∆y′0 which we will call simply ∆x′ and ∆y′. With these new definitions

Eq. 1.51 and Eq. 1.52 can be rewritten as:

∆x′ = −B1x+ A1y

(1.56)

∆y′ = B1y + A1x
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1.8.2 Coupling from Solenoidal Fields

Not all sources of linear coupling are included in Eq. 1.56. It is also

possible to obtain coupling through the variables y′ and x′ when axial magnetic

fields are present. The mathematical form of such terms can be easily obtained

from the Lorentz force (see for example [26]) and is given by:

∆x′s =
∆LBsy

′

Bρ
(1.57)

where ∆x′s is the horizontal kick that the orbit experiences due to the axial

magnetic field. I will evaluate the ratio between the terms that account for

the axial magnetic field and the skew quadrupole.

∆x′s
∆xskew

=
∆LBsx′

BρA1x
(1.58)

where ∆xskew is the kick due to the skew quadrupole alone.The maximum

values of x and x′ are given by [30]:

xmax =

√

εβ

π

(1.59)

x′max =

√

εγ

π

Replacing Eq. 1.59 in Eq. 1.58 we get:

∆x′s
∆xskew

=
∆LBs

√
γ

Bρ
√
β

(1.60)

The main source of axial magnetic fields in RHIC are the solenoids used in the

experiments like PHENIX. Using typical values of the PHENIX experiment
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Description Symbol Value (injection) Value (storage)
Magnetic Rigidity |Bρ| 97.5 T- m 839.5 T - m
Beta at Phenix β 4.8 m 3. 1 m

Gamma at Phenix γ 0.32 m( − 1/2) 0.32 m( − 1/2)
Solenoid Lenght ∆L 1 m 1 m

Axial Field Bs 0.5 Tesla 0.5 Tesla

Table 1.1: Phenix solenoids parameters. Some of the parameters were taken
from [31]

(Table 1.1), Eq. 1.60 evaluated at injection is 1.31 and the same equation eval-

uated at storage is 0.2. The axial magnetic fields produced by the experiment

might then have a significant effect in the linear coupling of the machine, at

least for injection. During accelerator physics beam experiments and machine

development is then neccesary to make sure that these magnets are off.

1.8.3 Global Coupling: ∆qmin

This dissertation is mainly concerned with local error evaluation and cor-

rection. However, there are global measurements that are used in this thesis

to test the effectiveness of the local correction. One of those quantities is

the ∆qmin, the minimum possible separation between the horizontal and the

vertical plane.

∆qmin can be found after solving the system of differential equations (see

Eq. 1.32):

x′′ +K(s)x = −By(s)

Bρ

(1.61)
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=
∆x′

∆l

and similarly for the y plane:

y′′ +K(s)y =
Bx(s)

Bρ

(1.62)

=
∆y′

∆l

Therefore the equations of motion become:

x′′ +Kx(s)x = − B′

Bρ
(x+ 2φy)

(1.63)

y′′ +Ky(s)y =
B′

Bρ
(y − 2φx)

The general solution for these equation can be seen for example in [23].

Those solutions are 2 eigen-modes in terms of which any particle motion can

be described. The 2 eigenfrequencies of the eigen-modes are([24], [29]):

qI,II =
1

2

(

qx + qy ±
√

(qx− qy)2 + ∆q2
min

)

(1.64)

where qx and qy are the fractional tunes which one would expect without

coupling, qI,II are the couple tunes, and ∆qmin is a quantity that is directly

related with the coupling errors throughout the machine (see for example [24],

[25], [27]). ∆qmin can be measured by varying any of the tunes the tunes qx

or qy while measuring the real tunes of the machine in both planes like in

Fig. 1.10. The closest distance between qI and qII graphs is equal to ∆qmin as

can be verified from Eq. 1.64.
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Figure 1.10: Measurement of ∆qmin from coupled tunes.
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∆qmin is a very important quantity used on a routine basis to determine

the global coupling of an accelerator and it will be used here to evaluate the

effectiveness of the local decoupling performed with the techniques developed

in this thesis.
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Chapter 2

Action and Phase Jump
Analysis

Optics errors in an accelerator lattice can be studied systematically by well

known techniques like the Measured Response Matrix [4]. In this technique

the strengths of all dipole correctors in the ring are varied while registering

the change in the orbit data. This information can be used afterwards to

accurately calibrate the linear optics in electron storage rings.

There are other techniques like the Model Independent Analysis (MIA)

[5] that were initially applied in LINACS and recently this technique has been

extended to storage rings [6].

In MIA analysis, the particle centroid motion is described in terms of

temporal and spatial patterns. The BPM data of several pulses from a LINAC

or turn by turn trajectories from a ring are then used to create a matrix and

after Singular Value Decomposition Analysis [7] the parameters affecting the

beam motion can be determined. One of the advantages of this technique
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is that doesn’t require a beam line model and is non-invasive or minimally

invasive to accelerator operations.

During the early stage of an accelerator commissioning, methods that pro-

vide information about errors at one specific location of the ring are preferred.

One of the most common techniques of this kind is the closed orbit bump. A

closed orbit bump is generally created with 3 dipole correctors set to values

such that the orbit is perturbed only in a localized region of the accelerator.

More than 3 dipole correctors are also used to gain control over parameters

like the maximum position of the bump and the angle respect to the azimuthal

coordinate s.

Closed orbits bumps can be used to find certain kind of lattice errors (see

Appendix D). During the 2000 and 2001 RHIC commissioning, closed orbit

bumps were made around some of the triplets in the Interactions Regions of

the accelerator rings, leading to reliable values of the skew quadrupole errors

[16]. The technique also give estimates of the triplet integrated gradient error.

Closed orbit bumps in combination with tune measurements are also a

valuable tool to evaluate nonlinear errors. This procedure was used in the

RHIC 2001 run[17] and the RHIC 2003 run to correct non linearities at the

RHIC IR’s. For a complete reference of the methods that have been used or

methods that are under current development to measure non linearities see

[18].

Beam based alignment techniques are also widely used to measure quadru-

pole error alignments ( see [8] and [9]). The “classical” beam based alignment
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technique is to vary the strength of one or several quadrupoles and measure

the downstream deflection. This technique is limited by the systematic error

caused by the shift of quadrupole center when its strength is varied.

There is still another technique to localize and measure errors based on

the fact that regions bounded by magnetic errors can be modeled with the

design beta functions even though the real beta functions might change (see

Section 1.5). The general idea is to fit certain sectors of the orbit to the

designed model and systematically increase the extension of the sector until the

fit start to fail. The place where the fit starts to fail is a potential place where

a magnetic error might be present. This technique has been used successfully

in the past on closed orbits ( see for example [13] and [14]) and most recently

in the PEP-II commissioning [15]) .

This approach, however, is not the most common approach to error anal-

ysis in an accelerator lattice. One of the reasons is that in its original form

this technique requires many iterations just to find the location of a particular

error.

The Action and Phase analysis that is described in this chapter was born

as a simple tool to find gross optics errors in RHIC but it has evolved into a

technique that is able to give precise error estimates of a group of quadrupole

magnets such as a triplet. This information is enough, for example, to set local

correctors in order to correct for the linear magnetic errors without realigning

the magnets as it will be explained below. This method also allowed the

development of a technique to find nonlinear errors in the interaction regions.
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Since orbits for action and phase analysis are produced with dipole cor-

rectors, action and phase analysis is free from systematic errors like the ones

introduced by the quadrupoles in the beam based alignment techniques men-

tioned previously.

Another advantage of the action and phase analysis method is the ability

to combine the strength of techniques to find local errors (like the orbit bump

method) and the strength of general methods that allow the determination of

many errors with the same set of orbits.

In this Chapter I will describe the basic idea of action and phase analysis

and the first evidences that lead to linear and non linear error determination

at RHIC IR’s.

2.1 The Method

Under ideal conditions, the action and phase of the betatron oscillations

of a particle should remain constant throughout the machine. Magnetic errors

in the different elements of the ring can lead to a change of these two constants

of motion. These changes can indeed be used to determine the location of such

errors and their strengths.

It is then necessary to have measurements of action J and phase ψ in

many places in the ring as possible. The Beam Position Monitors are the

natural choice to indirectly measure J and ψ all around the ring. This is done
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by taking pairs of adjacent BPM’s and inverting the equations:

x1 =
√

2Jβ1 sin(ψ1 − ψ)

(2.1)

x2 =
√

2Jβ2 sin(ψ2 − ψ)

to obtain:

J =
(x2

1 + x2
2 − 2x1x2 cos(ψ1 − ψ2))

sin4(ψ2 − ψ1)

(2.2)

tanψ =
x1 sinψ2 − x2 sinψ1

x1 cosψ2 − x2 cosψ1

where x1 and x2 correspond to any two adjacent BPM measurement, β1, β2, ψ1

and ψ2 are their corresponding beta functions and phase advances and finally

J and ψ are the action and phase.

Eq. 2.2 is applied to all adjacent BPM pair measurements in the ring to

obtain functions of action and phase with respect to s.

2.2 Application of Action and Phase analysis

to RHIC 2000 First turn Orbits

In order to apply the algorithm defined by Eq. 2.2 to RHIC BPM measure-

ments it is necessary to know the design beta functions and phase advances at

all BPM’s in the ring. The MAD program [10] is used in RHIC to numerically

find the beta functions and phase advances defined by Eq. 1.16. The solution
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given by MAD for the beta functions corresponds to an ideal lattice and it is

a solution that closes on itself for analysis of closed orbits.

A software application (MODULAR IR2) was created to read the BPM

orbit data, the Twiss files and other auxiliary files ( see Chapter 9 ) and to

repeatedly apply Eq. 2.2 and create graphs of J and ψ as function of the axial

coordinate s.

In order to test the early versions of MODULAR IR2, a small program

that generates single pass orbits (BMODEL for Blue ring and YMODEL for

Yellow ring) from the betatron equation (Eq. 1.17) was created. This simple

program allows the user to choose the amplitude of the betatron oscillation or,

equivalently, the action J and the phase advance δ. The first simulation was

done by setting a single dipole corrector bo7-th12 such that the downstream

action of the betatron oscillation was 2000 nm. Fig. 2.1 is obtained after

processing the previous simulated single pass orbits with MODULAR IR2.

Action and phase remain constant except at one point that corresponds to the

location of the dipole corrector bo7-th12. The values of action and phase in the

graph downstream of the dipole corrector exactly correspond to the values used

in the program BMODEL to simulate the orbit. The third graph of Fig. 2.1

is a representation of RHIC lattice. The thin long bars represent quadrupole

magnets while the long short bars in between represent dipole magnets. The

regions limited for big empty spaces are known as the Interaction Regions

(IR’s).

The real trajectories to be analyzed were produced by turning on a dipole
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Action and phase Analysis of Simulated Orbits 
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Figure 2.1: a) Action analysis of an orbit calculated with the betatron equa-
tion. b) Phase analysis of the same orbit. c) Representation of the RHIC
lattice. The long bars represent quadrupoles while the short ones represent
dipoles.
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corrector and then making the difference trajectory with the closest single

trajectory in time available with the corrector off (baseline). The strength of

the dipole corrector is chosen such that the betatron oscillations are as big as

possible to get a strong orbit signal while avoiding beam losses as much as

possible. Angles of a few tenths of mRad are an adequate value in the RHIC

case giving first turn trajectories as large as 10 mm or more in the arcs. The

difference trajectories are helpful, first to eliminate any possible dipole kick

present in the ring except the one that excites the oscillation and second to

eliminate any possible systematic error in the BPM measurements.

Fig 2.2 and Fig. 2.3 show the action and phase analysis of an orbit excited

with a vertical dipole corrector (bo7-tv7 in RHIC nomenclature) located at

s = 528.2m. It is possible to identify in these graphs regions were the action

and phase remains roughly constant, while they make significant jumps at the

IR’s.

The possible source of these jumps can be either gradient errors, skew

quadrupole errors, or any other multipole component of the IR quadrupole

magnets (triplets). Dipole errors cannot be the source of these jumps because

the difference orbit eliminates any possible dipole error present in the orbit

except for the one that is exciting the orbit. Some of the first turn difference

orbits taken during RHIC 2000 run indicate the presence of significant linear

coupling at the IR’s.Take for example the orbit shown in Fig. 2.4. This orbit

was excited with a horizontal dipole corrector at s = 1672.9m. As the betatron

oscillation goes through the first IR between s = 603m and s = 675m, a
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Figure 2.2: a) Action analysis in the vertical plane of a difference trajectory
obtained during the 2000 RHIC run. The oscillations were excited by a the
dipole corrector bo7-tv7 located at s = 528.2m. b) Phase analysis of the same
orbit. c) Lattice representation of RHIC.
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Figure 2.3: a) Action analysis in the horizontal plane of a difference trajectory
obtained during the 2000 RHIC run. In this case, the oscillations are induced
from the vertical plane due to strong coupling at the IRs. b) Phase analysis
of the same orbit. c) Lattice representation of RHIC.
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Figure 2.4: principal window of the RHIC orbit display program. a) First turn
orbit excited just before IR12. b) Lattice representation of RHIC. c) Induced
orbit in the vertical plane due to coupling at IR’s.
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betatron oscillation is induced in the opposite plane. This can be clearly seen

for the change in the amplitude of the orbit in the vertical plane. These are

clear signs of local coupling sources in the machine, and since the induced

amplitude grew proportionally with the amplitude of the excited orbit it was

possible to conclude that the coupling was linear.
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Chapter 3

Linear Errors at RHIC’s IRs
and First Turn Trajectory
Analysis

The most significant sources of optics errors during the RHIC 2000 run

were located at the interaction regions as was shown in Chapter 2. Those errors

turned out to be linear errors, i.e. gradient error and skew quadrupole errors.

The procedure to quantify such errors from the action and phase analysis of

first turn difference trajectories is discussed in this chapter.

3.1 Determination of Skew Quadrupole

Errors from Action and Phase Graphs

The graphs of action and phase shown in Fig. 2.2 and Fig. 2.3 suggest that

the orbit can be modeled with an independent betatron oscillation in each arc.

This fact is also supported by the theoretical results obtained in Section 1.5.

For each arc the difference lies in the ψ and J that best fit the orbit. Action
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and phases between adjacent arcs can be used to estimate the skew quadrupole

errors at the interaction regions. The formulas to be employed are derived in

the following lines.

Assume there is a magnetic error ∆x′ at some position s0 inside a specific

IR. The orbit in the adjacent arc to the IR under study such that s < s0 can

be represented by:

xL(s) =
√

2JLβx(s) sin(ψx(s) − ψL) (3.1)

and the orbit in the adjacent arc to the IR under study such that s > s0 will

be:

xR(s) =
√

2JRβx(s) sin(ψx(s) − ψR)

(3.2)

= xL(s) + ∆x′
√

β(s0)βx(s) sin(ψx(s) − ψ(s0))

where the the subscripts L and R were used to label quantities evaluated at

s < s0 and at s > s0 respectively.

Since sin(ψx(s)) and cos(ψx(s)) are orthogonal functions the following

equations can be derived from Eq. 3.2:

∆x′
√

β(s0) cos(ψ(s0)) =
√

2JR cos(ψR) −
√

2JL cos(ψL)

(3.3)

∆x′
√

β(s0) sin(ψ(s0) =
√

2JR sin(ψR) −
√

2JL sin(ψL)

44



Squaring and adding these two equations leads to:

∆x′ =

√

√

√

√

2JR + 2JL − 4 ∗
√
JR

√
JLcos(ψR − ψL)

β(s0)
(3.4)

and if Eq. 3.3 are divided we get:

tanψ(s0) =

√
2JR sin(ψR) −

√
2JL sin(ψL)√

2JR cos(ψR) −
√

2JL cos(ψL)
(3.5)

Eq. 3.4 is a very important result. It relates the strength of the magnetic error

with quantities that can be determined experimentally. Such quantities ( JL,

JR, ψL and ψR) can be extracted from plots of action and phase like the one

shown in Fig. 3.1. Since magnetic errors in the arcs are small when compared

with the interaction region errors, phase and action are assumed constant

within the arcs. It is then easy to do a rough estimate of all required actions

and phases by just drawing horizontal lines over the distributions of actions

and phases within each arc 1. Fig. 3.1 shows how each variable is obtained

from the graph to estimate ∆x′ at IR12. ∆x′ is a quantity that contains

information about the strength of the magnetic error at the particular place

of study in the ring. RHIC has a local correction system to suppress these

errors in each triplet of all interaction regions. In the following section, ∆x′

will be related with the strengths needed in the RHIC local correction system

in order to suppress the skew quadrupole errors.

1More rigorous algorithms were developed to find action and phases in the arc and they

will be discussed in Appendix C
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Figure 3.1: a) Measured orbit (small circles) in the vertical plane fitted to the
model (solid line) arc by arc. The action and phase of the model is obtained
by averaging action and phases within each arc (see subroutine fittedpos in
Appendix C). b) Lattice representation of RHIC. c) Action analysis of the
measured orbit. d) Phase analysis of the measured orbit.
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3.2 RHIC Local Linear Coupling Correction

System

Since the beta functions at RHIC IRs can be many times bigger than in

any other place in the ring (see Fig. 3.2), IRs are specially sensitive to magnet

errors, particularly roll errors. Studies performed during the RHIC design

stage show that rolls of the order of mrad can cause tune shifts of about 0.1

units, big enough to lead the beam to an undesirable resonance condition [11].

In order to correct for these effects, each RHIC IR was provided with 2 skew

quadrupole corrector packages, one for each triplet of the corresponding IR

(see [12]).

In order to understand how the corrector works, it is convenient to write

the total orbit xtotal produced by the skew error in the triplet and the corrector:

xtotal(s) =
[√

2JTrip
x − skrey

sc
√

βsc
x

]

√

βx(s) sin(ψx(s) − ψTrip
x ) (3.6)

where JTrip
x = (∆x′)2 β(s0)

2
, ysc is the beam position in the plane of the kick (in

this case the vertical plane) at the location of the skew quadrupole corrector,

βsc
x is the beta function at the position of the skew quadrupole corrector, skre

is the strength of the corrector in numbers that can be understood by the

Ramp Editor Manager (see Chapter. F), ψTrip
x the phase at the triplet and

βx(s) and ψx(s) the beta functions and phase functions. The strength of the

corrector must be adjusted such that the oscillation due to the skew error is

suppressed or in mathematical terms xtotal = 0. Using this condition in Eq. 3.6
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the strength needed in the corrector is:

skre =

√

2JTrip
x

ysc
√

βsc
x

(3.7)

Since the two skew quadrupole correctors of a specific IR have a phase advance

close to π, it is possible to use a single skew quadrupole corrector to compensate

the skew errors in the whole IR. This is specially useful when it is not possible

to have individual estimates of JTrip
x for the left and right triplets, but rather

an integrated value J IR
x . In that case the optimal value of the corrector is given

by Eq. 3.7 when JTrip
x is replaced by J IR

x , the equivalent action associated

with the overall magnetic kick due to skew errors that the orbit receive at the

IR.

Notice that JTrip
x or equivalently ∆x′ is a signed quantity. This is not

obvious from Eq. 3.4 which only calculates the absolute value of ∆x′. The

sign of ∆x′ is determined by Eq. 3.5. The variable ψ(s0) corresponds to the

phase advance of the triplet under study. If Eq. 3.5 gives a phase very close

to the phase of the triplet then the sign of ∆x′ is positive. On the other hand,

if Eq. 3.5 gives a phase very close to the phase of the triplet plus π then the

sign of the ∆x′ is negative.

3.3 Analysis of First Turn Simulated Trajec-

tories

Before doing analysis in real orbits, simple simulation of orbits with skew

quadrupole errors were made by modifying the software BMODEL that was
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mentioned earlier, and that will be described in Chapter 9.

The simulation is basically a trajectory obtained with Eq. 1.17, for ex-

ample in the vertical plane. A similar orbit is created in the horizontal plane

starting at the location of the skew quadrupole error, with an oscillation am-

plitude given by:
√

2JTrip
y = skerrx

err
√

βerr
x (3.8)

where skerr is the simulated skew quadrupole error, xerr is the horizontal posi-

tion of the beam, βerr
x is the horizontal beta function evaluated at the location

of the skew quadrupole error. Notice that the amplitude of the induced os-

cillation in the vertical plane is proportional to the horizontal position of the

beam at the place where the error is simulated.

The orbit is analyzed with the software MODULAR IR2, as before, to

find the action and phase before and after the skew quadrupole error. Since

JL is zero in this case JTrip = JR and skre can be easily calculated from Eq. 3.7,

and their values verified as those values used to simulate the orbit.

Orbits were simulated with skew quadrupole errors at IR10 , IR12 and

IR2. MODULAR IR2 was then used to extract the skew quadrupole errors

from the simulated orbits. The extracted values were not exactly the same as

the ones fed into the simulation, as can be seen in the third column Table 3.1.

The reason lies in the fact that the program approximates ysc in Eq. 3.7 by

the formula:

ysc =

√

√

√

√

βsc
y

βbpm
y

ybpm (3.9)
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where ybpm is the beam position at the closest BPM to the skew quadrupole

corrector, and βbpm
y is the beta function in the same BPM. The approximation

here is to consider that the phase advance between the BPM and the skew

quadrupole corrector is equal to zero.

IR simulated aprox. linear inter. fit all BPM’s
(10−3 1/m) (10−3 1/m) (10−3 1/m) (10−3 1/m)

IR10 1 0.973 0.989 .99999
IR12 3 3.09 3.79 2.9999
IR2 6 5.99 7.55 6.0000

Table 3.1: Three different approaches were used to find ysc in the program
MODULAR IR2

A second way of calculating ysc was by linear interpolation between the 2

closest BPM measurements. This approach corresponds to the fourth column

in Table 3.1 where significant discrepancies with the simulated values can be

seen. Linear interpolation doesn’t seem a good method to work inside the IR.

This might be due to the rapid change of the beta functions inside the IR. For

example, in IR12 the vertical beta function of the BPMs used to do the linear

interpolation is about 200m while at the place where the error was simulated

(between the BPMs) the vertical beta function is about 300m.

The third approach is to fit all BPMs measurements to the betatron equa-

tion in the closest arc to the skew quadrupole corrector under consideration.

The model obtained in this way is then used to extrapolate ysc. The values

in the fifth column of Table 3.1 correspond to the skew errors calculated with

this approach. The agreement between simulated values and extracted values
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in this case goes beyond the sixth significant figure. Later, we will see that

there are almost no differences between the first and the third approach when

they are applied to real data and hence they can be use indifferently.

3.4 RHIC 2000 Difference First Turn Trajec-

tory Analysis

During the first RHIC runs in 1999 and 2000, difference trajectories pro-

duced by variations of dipole correctors strengths were taken on the first turn

after injection, and stored for general optics studies. Those orbits can be found

in the RHIC control system in the same root directory

/operations/app store/RhicOrbitDisplay/Blue/orbit data/. For the analysis

presented in this chapter the orbits were taken from the following subdirecto-

ries:

• /Run2001/June/Jun30EveDiffOrb/

• /Archive/April/Apr08Diff/

• /Archive/April/April29DiffOrbs/

• /Archive/May/May15Owl/

• /Archive/Run1999/

Several factors should be considered before using Eq. 3.7 to find skre.

First, not all orbits are adequate to find skew errors in all triplets. One of
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the reasons is the phase advance between the dipole corrector position and the

triplet ∆ψct. Desirable phase advances are numbers close to odd multiples of

π/2, since then the orbit oscillation will be maximum at the triplet and the

betatron oscillation induced in the opposite plane will also be maximum.

The second factor to consider is how close the dipole corrector used to

produce the betatron oscillation is to the IR under study. If the dipole corrector

is in the arc that immediately precedes the IR under study (left hand side for

Blue ring and right hand side for Yellow ring) the strengths derived from the

orbits will be called principal strengths, otherwise the strengths will be called

secondary strengths.

The main difference between principal and secondary strengths lies in the

induced orbit in the arc that immediately precedes the IR under study. For

principal strengths, the arc induced orbit that immediately precedes the IR

under study is zero, assuming no betatron oscillations are induced by other

magnets in the arc. The same orbit segment is in general different from zero

for the case of secondary strengths.

A third factor to take into account is the BPM measurement that is used

in Eq. 3.7 to evaluate the strength needed in the skew quadrupole corrector.

The BPM used for this purpose is usually the one just outside of the IR defined

by the triplets which in Fig. 3.3 corresponds to either bo7-b3 or bi8-b3. This

BPM has almost the same phase as its nearest skew quadrupole corrector,

and therefore the procedure to estimate the position of the beam at the skew

quadrupole corrector is simplified. When any of these BPMs is missing the

53



600 620 640 660 680
s[m]

Left Triplet

DX Dipoles 

Right Triplet

DX Dipoles 

Interaction Point

Hor. BPM
Vert. BPM

bo
7−

b3

bo
7−

b1

g7
−

bx

g8
−

bx

bi
8−

b1

bi
8−

b3

Skew Quadrupole

sq
07

c2
b

sq
08

c2
b

Corrector
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corresponding b1 BPM can be used instead.

In principle, only one difference trajectory would be needed to extract the

corrector strength required at a particular IR. However, several difference tra-

jectories produced by different dipole correctors and different dipole corrector

strengths are used to reduce the uncertainty in the measurement.

Principal and secondary strengths were used in IR8, IR10, IR12 and IR2

to do an average estimate of skre (see Table 3.2). The uncertainty corresponds

to the variation of skre with the different orbits used to do the calculation.

On the other hand skre strengths for IR4 and IR6 have big uncertainties when

principal and secondary strengths are considered simultaneously (0.45 ± 0.27

for IR4 and .69 ± .2 for IR6). Table 3.2 shows the values of skre for IR4 and

IR6 when only principal strengths are considered. The bigger uncertainties in

IR skre

(10−3 1/m)
IR8 0.67 ± 0.07
IR10 1.00 ± 0.15
IR12 0.18 ± 0.03
IR2 0.99 ± 0.14
IR4 0.63 ± 0.06
IR6 0.60 ± 0.15

Table 3.2: Measured Quadrupole Skew Errors(Run 2000) in Blue ring. More
than 40 difference trajectories with kicks at different positions were used to
obtain this table

skre when secondary strengths are considered might be due to the presence of

gradient errors. Primary strengths are not sensitive to gradients errors since

the position of the beam in the IR is zero or very close to zero, as discussed ear-
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lier. Nonlinear effects might also influence the differences observed in principal

strength uncertainties and the secondary strengths uncertainties.

The orbit bump method (see Appendix D) was also used during the RHIC

run 2000 to estimate skre. The orbit bump method provided one strength for

each triplet rather than the whole IR. these numbers,however, can be compared

with the ones obtained on Table 3.2 by just adding the strengths found in the

2 triplets at each IR (see Section B.2). There is a reasonable good agreement

between the values estimated with the orbit bump method and the method

presented here as can be verified on Table D.1.

The values ysc or xsc at each IR needed to calculate the corresponding skre

in Table 3.2 were found by fitting the BPM measurement in the the closest arc

to the skew quadrupole corrector, as explained earlier in this chapter. Values

of skre were also estimated using the approximate formula to find ysc from

the closest BPM. The differences with Table 3.2 for most of the IRs is below

6%. In other words, for real data, the fitting routine doesn’t introduce a big

improvement in the determination of the skew quadrupole errors.
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Chapter 4

Correction of Linear Coupling
during the RHIC 2001 Run

This chapter has the purpose of illustrating the procedure followed during

the RHIC 2001 run to perform local correction at the IRs making special

emphasis on the importance of the orbit measurements during the correction

procedure.

Global correction is also presented because the results obtained from this

procedure favors the orbit measurements as a tool to perform local linear

decoupling.

4.1 Local Correction of Skew Quadrupole Er-

rors at RHIC IRs

As mentioned in Section 3.2 RHIC has corrector packages located at each

triplet of the IRs. These corrector packages include skew quadrupole correctors

that are used for local correction of linear coupling.
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Figure 4.1: Induced orbits in the horizontal plane after creating a vertical
orbit bump around the right triplet of 8 o’clock. Setting the skew quadrupole
corrector to the calculated value the rms of the induced orbit is about 3 times
smaller.

The values at which such correctors should be set has been determined

from orbit measurements in the previous chapter (see Table 3.2). Such values

can be put in either the left triplet skew quadrupole corrector or the right

triplet skew quadrupole corrector to locally correct the coupling effect at a

specific IR. It is also possible to set the correctors such that their sum equals

the skew quadrupole error (see demonstration in Appendix B.2) . This would

guarantee that the correction is effective at least outside the IRs. However,

other methods like the orbit bump method (see Appendix D) and the method

that will be presented in the next chapter make predictions for each corrector

individually. The actual skew quadrupole corrector setting was done during

the RHIC 2001 run (Gold Run). The procedure was basically to choose some
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starting value for the corrector of a particular triplet. Then, orbit bumps were

done around such triplet while monitoring the induced orbit in the opposite

plane (see Fig. 4.1). Several settings were tried and the one that give the

minimum induced orbit in the opposite plane was chosen. This procedure

was followed for IR8, IR10 and IR2. The resultant settings were consistent

with the results of the orbit bump method and first turn analysis as well (see

Table 4.1). The other correctors were then set in 1 step by using the predicted

values by the two methods.

Triplet skre skre all IR
Actual Setting Mesured Values

10−3 1/m 10−3 1/m
1 -0.20
2 1.20

0.99

3 0.320
4 0.320

0.63

5 0.40
6 0.10

0.60

7 -0.80
8 1.30

0.67

9 0.35
10 0.65

1.00

11 0.09
12 0.09

0.18

Table 4.1: Skew quadrupole correctors at IR8, IR10 and IR2 were set by using
the orbit bump method on line. Since the settings obtained in this way were
consistent with the measured values, the remaining correctors were set in one
step according the measured values. In order to compare the second and the
third column of this table it is neccesary to add the strengths of the left and
right triplets of each IR.
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4.2 Global Correction of Linear Coupling

We have seen that the orbit bumps (Fig. 4.1) made during the local cor-

rection procedure indicates that the measurements from first turn orbits are a

reliable way of finding the strengths of the skew quadrupole correctors.

Comparisons with magnetic measurements is another strong indication

that the orbit measurements indeed give accurate numbers to set the local

skew quadrupole correctors and it will be described on detail on Chapter 6.

Another possible indication that favors orbit measurements is the global

decoupling measurements made during the RHIC 2001 run, some of which will

be presented in the following paragraphs.

RHIC has 3 families of skew quadrupole correctors in the arcs located at an

appropriate phase advance between them to facilitate the global correction of

linear coupling. The procedure to do the correction is to measure the coupled

tunes but instead of varying the tune knobs as was shown in Section 1.8,

the skew quadrupole family strengths are varied one by one. Fig. 4.2 shows a

typical tune scan with skew quadrupole family #1 while the other two families

are set to fixed values. The point at which the tunes are the closer determines

the optimal strength setting for the skew quadrupole family under study and

also the ∆qmin. In principle ∆qmin should be zero if the quadrupole families

are properly adjusted. Experimental results show that this is not always the

case and that there is always a ∆qmin different from zero (This is evident in

Fig. 4.2) that changes with the settings of the local skew quadrupole correctors.
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Figure 4.2: Horizontal and Vertical tunes while the skew quadrupole strength
of family #1 is varied ( Jun 4 RHIC 2001 run ).

As example I will cite the measurements of ∆qmin done on May 31 and July

12 in the RHIC 2001 run.

The measured ∆qmin on May 31 of 2001 was about 0.007 without any

local correction. The value of 0.007 is the minimum ∆qmin obtained for all the

measurements performed before the local linear coupling correction.

After the local linear coupling correction was done in all Blue ring IRs,
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∆qmin was measured and its value was 0.0005, one order of magnitude smaller

than the minimum value obtained before the local linear coupling correction.

The strengths used in the skew quadrupole families to reach ∆qmin also

indicate that the sources of linear coupling were reduced after the local linear

coupling correction was done. The skew quadrupole families were set to Family

#1 = 0, Family #2 = 0.0012 1 , Family #3 = 0 on May 31 of 2001 (before

decoupling) and the same families were set to Family #1 = 0, Family #2 =

-0.0006, Family #3 = 0 (after decoupling).

1One of the power supplies for this family of skew quadrupoles was broken when this

family was set. This means that only 12 out 16 quadrupole were on, which in turns means

that the effective strength was 0.0009
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Chapter 5

Linear Errors from Closed Orbit
Analysis

First turn orbits are only available at injection and they are very suscep-

tible to random fluctuations. Closed orbits, on the other hand, are available

at injection, storage and through the ramp and since closed orbits are ob-

tained from the average of many turns orbits the chances of having random

fluctuations are minimized.

Closed orbits are also possible particle trajectories and hence the analysis

done with first turn orbits in Chapter 3 should also be valid for closed orbits.

This is partially true because the cases that were studied in Chapter 3 assume

the presence of only skew quadrupole errors. A more complete description

should also include gradient errors and non linear errors.

In this chapter, a general technique that will allow to measure linear and

non linear errors at RHIC IRs from orbit measurement will be developed. Even

though, the technique is applied only to closed orbits in this chapter, the same
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Figure 5.1: a) Simulated RHIC orbit excited with a dipole corrector at s =
215m and with a magnetic kick error ∆x′ at s = 1945m. b) Action analysis of
the orbit in a). c) Phase analysis of the orbit in a).

technique can be used indifferently for first turn orbits and turn by turn orbits.

5.1 Closed Orbits and Action and Phase Anal-

ysis

It was mentioned in the introduction of this Chapter that closed orbits are

also possible particle trajectories and hence analysis done for particle trajec-
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tories are also valid for closed orbits. In this section, it will be shown that the

previous statement is valid at least for Eq. 3.4, which was originally deduced

for orbit trajectories.

Start by assuming that there is a magnetic error ∆x′ located at phase

ψI , and that a dipole corrector has been activated far away from the magnetic

error (see Fig. 5.1). Using superposition principle and the fact that between

the errors it is possible to use the designed lattice functions (see Section 1.5)

the resultant closed orbit for ψ(s) < ψI is:

√

2JLβ(s) sin(ψ(s) − ψL) = A
√

β(s) sin(ψ(s) − ψA)

(5.1)

+
∆x′

√

βIβ(s)

2 sin(πQ)
cos(ψI − ψ(s) − πQ)

where JL and ψL are the action and phase associated with the resultant closed

orbit for ψ(s) < ψI (see Fig. 5.1), A and ψA are the amplitude and phase

associated with the closed orbit due to the dipole corrector, βI is the beta

function at the place where the magnetic error is, and Q corresponds to the

tune of the machine.

It is convenient to write the contribution of the magnetic error to the

closed orbit, xDK(s), in its sinusoidal form. That is:

xDK(s) =
∆x′

√

βIβ(s)

2 sin(πQ)
cos(ψI − ψ(s) − πQ)

=
∆x′

√

βIβ(s)

2 sin(πQ)
sin(ψI − ψ(s) − πQ+ π/2)
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(5.2)

= −
∆x′

√

βIβ(s)

2 sin(πQ)
sin(ψ(s) − χL)

= −
√

2JIβ(s) sin (ψ(s) − χL)

where, in order to simplify the notation, χL and JI has been defined in the

following way:

χL = π/2 − πQ+ ψI (5.3)

and

JI =
∆x′2βI

8 sin2(πQ)
(5.4)

Replacing Eq. 5.2 and the definitions of χL and JI in Eq. 5.1, we have:

√

(2JLβ(s)) sin(ψ(s) − ψL) = A
√

(β(s)) sin(ψ(s) − ψA)

−
√

2JIβ(s) sin(ψ(s) − χL) (5.5)

=
√

β(s)[A(sinψ(s) cosψA − sinψA cosψ(s))

−
√

2JI(sinψ(s) cosχL − sinχL cosψ(s))]

=
√

β(s)[(A cosψA −
√

2JI cosχL) sinψ(s)

(−A sinψA +
√

2JI sinχL) cosψ(s)]

The last equation is compared with:

√

2JLβ(s) sin(ψ(s)−ψL) =
√

2JLβ(s) [sinψ(s) cosψL − sinψL cosψ(s)] (5.6)

to obtain:
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√

2JL cosψL = A cosψA −
√

2JI cosχL

(5.7)

−
√

2JL sinψL = −A sinψA +
√

2JI sinχL

Similar relations can be obtained for ψ(s) > ψI . As before, the superposition

principle is used to find the resultant closed orbit.

√

2JRβ(s) sin(ψ(s) − ψR) = A
√

β(s) sin(ψ(s) − ψA)

(5.8)

+
∆x′

√

βIβ(s)

2 sin(πQ)
cos(ψ(s) − ψI − πQ)

where JR and ψR are the action and phase associated with the resultant closed

orbit for ψ(s) > ψI and A and ψA are the amplitude and phase associated with

the closed orbit due to the dipole corrector.

It is convenient to write the contribution of the magnetic error to the

closed orbit, xDK(s), in its sinusoidal form. That is:

xDK(s) =
∆x′

√

βIβ(s)

2 sin(πQ)
cos(ψ(s) − ψI − πQ)

=
∆x′

√

βIβ(s)

2 sin(πQ)
sin(ψ(s) − ψI − πQ+ π/2)

(5.9)

=
∆x′

√

βIβ(s)

2 sin(πQ)
sin(ψ(s) − χR)

=
√

2JIβ(s) sin (ψ(s) − χR)
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where χR = πQ+ ψI − π/2. Replacing Eq. 5.9 in Eq. 5.8 we have:

√

(2JRβ(s)) sin(ψ(s) − ψR) = A
√

(β(s)) sin(ψ(s) − ψA)

+
√

2JIβ(s) sin(ψ(s) − χR)

=
√

β(s)[A(sinψ(s) cosψA − sinψA cosψ(s))

(5.10)

+
√

2JI(sinψ(s) cosχR − sinχR cosψ(s))]

=
√

β(s)[(A cosψA +
√

2JI cosχR) sinψ(s)

(−A sinψA −
√

2JI sinχR) cosψ(s)]

The last equation is compared with:

√

2JRβ(s) sin(ψ(s) − ψR) =
√

2JRβ(s) [sinψ(s) cosψR − sinψR cosψ(s)]

(5.11)

to obtain:

√

2JR cosψR = A cosψA +
√

2JIR cosχR

(5.12)

−
√

2JR sinψR = −A sinψA −
√

2JIR sinχR

Combining Eq. 5.7 and Eq. 5.12:

√

2JL cosψL −
√

2JR cosψR = −
√

2JI cosχL −
√

2JI cosχR

= −
√

2JI(cos(χL) − cos(χR))
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(5.13)

−
√

2JL sinψL +
√

2JR sinψR =
√

2JI sinχL +
√

2JI sinχR

=
√

2JI(sinχL + sinχR)

Squaring and adding the 2 previous results lead to:

2JL + 2JR − 2(2
√

JLJR)(cosψL cosψR + sinψL sinψR) = 4JI

+ 4JI cosχL cosχR

(5.14)

+ 4JI sinχL sinχR

JL + JR − 2
√

JLJR cos(ψL − ψR) = 2JI

+ 2JI cos(χL − χR)

where χL −χR = π− 2πQ according to the previous definitions. Inserting this

result in Eq. 5.14 we have:

JL + JR − 2
√

JLJR cos(ψL − ψR) = JI(2 − 2 cos(2πQ))

= 2JI(1 − cos2 πQ− sin2 πQ)

(5.15)

= 2JI(1 − (1 − 2 sin2 πQ))

= 4JI sin2(πQ)

From the last equation and the definition of JI in Eq. 5.4 it is finally possible

to relate ∆x′ with the measured action and phases by the equation:
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∆′

x =

√

√

√

√

2JL + 2JR − 4
√
JLJR cos(ψL − ψR)

βI

(5.16)

which is the same result obtained for first turn orbits (Eq. 3.4) as expected.

The fact that the same equation to obtain ∆x′ is valid for first turn orbits

and for closed orbits allows the same software to be used for both cases. The

only difference arises when errors are calculated at IR6. The reason is the

following: to calculate errors in IR6, orbit information in the arc that goes

from IR4 and IR6 and orbit information between the arc that goes from IR6

to IR8 are required. In first turn orbits, measurements in the arc between

IR6 and IR8 of the second turn are required to extract errors at IR6. Closed

orbits, on the other hand, use the arc between IR6 and IR8 contained in the

only turn orbit to estimate errors at IR6.

5.2 Determination of Linear Errors from In-

dividual Closed Orbits

During the RHIC 2000 run, a few difference closed orbits were taken for

diverse purposes. To find the corrector strengths from these orbits, Eq. 3.4

and Eq. 3.7 were used in the same way they were used for first turn trajectories

in Chapter 3. The results can be seen in Table 5.1. Measurement at IR2 and

IR6 were not possible due to multiple reasons like BPMs not working properly

at the IRs or poor fits. In general there are a well identified set of reasons to

discard an IR measurement and they are systematically check not only here
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IR skre

(10−3 1/m)
8 0.54 ± 0.18

10 0.56 ± 0.41
12 0.18 ± 0.07
4 0.35 ± 0.22

Table 5.1: skew errors from closed orbit analysis (RHIC 2000 orbits). No
gradient errors are considered for this analysis.

but in all the analysis that involve determination of errors with the aid of the

action and phase analysis. Appendix E summarizes the common failures found

in the difference orbits that make invalid an IR measurement.

One important observation about the results of Table 5.1 is the large

uncertainties associated with the skew quadrupole errors. In Section 3.4, I

made the distinction between principal and secondary strengths based on the

value of the action previous to the error. If such action was zero the strength

would be a principal strength, otherwise it would be a secondary strength.

Since it is unlikely to have arcs with action equal or closed to zero in closed

orbits, most of the strengths that can be extracted from closed orbits are

secondary strengths.

Strengths extracted from first turn orbits also had bigger uncertainties

when the secondary strengths were taken into account (see Section 3.4). This

effect might be due to the presence of gradient errors simultaneously with the

presence of skew quadrupole errors at the IRs. Eq. 3.7 to find skre was deduced

under the assumption that no gradient errors were present, this works well for

principal strengths, because the orbit before the error is zero or close to zero,
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and the contribution of the gradient term is zero even if the gradient itself is

different from zero.

For secondary strengths the contribution of the gradient error to the total

error ∆x′ can be significant and must be included in the calculations. Eq. 1.56

allows to find the skew error A1 and the gradient error ,B1, as function of

the measured quantities ∆x′, ∆y′, the horizontal position of the beam ,x, and

the vertical position of the beam ,y, at the position where ∆x′ and ∆y′ are

evaluated. Such relations are:

A1 =
y∆x′ + x∆y′

x2 + y2

(5.17)

B1 =
y∆y′ − x∆x′

x2 + y2
,

Using the same orbits that were used to produce Table 5.1, Eq. 5.17 leads to

Table 5.2.

IR A1 B1

(10−3 1/m) (10−3 1/m)
8 0.62 ± 0.14 0.22 ± 0.61
10 1.08 ± 0.35 1.38 ± 1.16
12 0.19 ± 0.07 0.09 ± 0.74
4 0.65 ± 0.53 1.76 ± 2.80

Table 5.2: Skew and Gradients obtained from Closed Orbit Analysis. Orbits
taken during the 2001 RHIC run.

Except for IR4, Table 5.2 shows a reduction in the uncertainty associated

with the skew quadrupole error A1 in the IRs when compared with Table 5.1.
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Also, the average values are much closer to the ones found from first turn

orbits (Table 3.2). However B1, the gradient error, has very big uncertainties

associated with it.

Later, we will see that the big uncertainties associated with the gradient

errors have their origin in the fact that B1 is not the same in both planes;

there will be a Bx
1 and By

1 .

A1 happens to be equal to skre, the ramp editor value at which the skew

quadrupole corrector must be set to cancel the coupling. There is a double

change of sign here. The corrector needed by definition should cancel the effect

of the original A1 error. This is the first change of sign. The second change of

sign is obtained due to the way skre has been defined (see Appendix F).

5.3 Simulation of Gradient and Skew Errors

Closed orbit simulations were performed with a simple program based on

the closed orbit equations. In this program there are basically two sources for

closed orbit displacements. The first source is the dipole corrector that in the

real experiment is set to a relatively large value and that will mainly determine

the closed orbit. The second source is the error that is to be simulated and

that will produce another closed orbit that can be superimposed on the one

produced by the dipole corrector. This approach is exact: no approximation

has been made at this point. The procedure is correct even for kicks from

non-dipole sources , according to the discussions presented in Section 1.5.
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Magnetic errors other than dipole kicks depends on the beam position ,

either horizontal or vertical at the position where the errors are. For closed

orbits, the beam positions at the location of the errors also depends on the

errors themselves. The simple program used to produce closed orbits need

as an input these beam positions before the program can produce the closed

orbit. The calculations of the beam position at the places where the errors are

were done only for linear errors, and they will be reproduced partially in the

following paragraphs.

In general, the orbits produced by the dipole kick and the linear error

together can be written as:

x(s) =
∆x′

√

βx(s)βx(s0) cos[|ψ(s) − ψ(s0)| − πQ]

2 sin πQ

(5.18)

+
(A1 y(s0) − B1 x(s0))

√

βx(s)βx(s0) cos[|ψ(s) − ψ(s0)| − πQ]

2 sinπQ

and

y(s) =
∆y′

√

βy(s)βy(s0) cos[|ψ(s) − ψ(s0)| − πQ]

2 sin πQ

(5.19)

+
(A1 x(s0) +B1 y(s0))

√

βx(s)βx(s0) cos[|ψ(s) − ψ(s0)| − πQ]

2 sin πQ

where ∆x′ and ∆y′ are the dipole kicks provided by the correctors and A1 and

B1 the linear coefficients of the errors. Evaluating Eq. 5.18 and Eq. 5.19 at s0
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we have:

x(s0) =
∆x′βx(s0) cos[πQ]

2 sin πQ

+
(A1 y(s0) − B1 x(s0))βx(s0) cos[πQ]

2 sin πQ

(5.20)

y(s0) =
∆y′βy(s0) cos[πQ]

2 sin πQ

+
(A1 x(s0) +B1 y(s0))βx(s0) cos[πQ]

2 sin πQ

This is a 2x2 linear equation system in the variables x(s0) and y(s0), which can

be solved with standard methods. Once x(s0) and y(s0) are known Eq. 5.18

and Eq. 5.19 can be evaluated at each point in the ring.

The simple simulator based on Eq. 5.18 and Eq. 5.19 was used routinely

to test the software to find strengths with closed orbits.

5.4 Dipole Correctors and IR errors

The simulator was also used to study how the difference phase advance

between the dipole corrector used to excite the betatron oscillation and the IR

under study, ∆ψci, would affect the determination of skew quadrupole errors.

With this objective in mind, orbits with a skew error and a gradient

error located at the skew quadrupole corrector of triplet 9 were simulated

using many different dipole correctors to excite the betatron oscillation. The

simulated orbits were then analyzed with the software MODULAR IR2 which

extracts the skew errors and gradient errors. Results can be seen in Table 5.3.

75



Corrector diff phase A1 B1

(10−3 1/m) (10−3 1/m)
bi4-th9 0.01 1.000 -0.984
bi12-th17 0.03 0.985 -0.974
bi4-th13 0.11 0.985 -0.993
bi4-th5 0.17 0.989 -1.025
bo3-th12 0.29 0.978 -1.022
bi5-th9 0.35 0.970 -1.024
bo2-th18 0.39 0.992 -0.961
bi5-th13 0.45 0.102 -0.964

Table 5.3: Effect of the difference phase advance between the dipole corrector
used to excite the betatron oscillation and the IR under study in the deter-
mination of linear errors. diff phase is not exactly the phase advance between
corrector and and IR but rather it is a normalized number that indicate how
close to the IR the closed orbit has a maximum (see Chapter 9). All the orbits
were simulated with A1 = 0.001 1/m and B1 = −0.001 1/m

In theory, the values in the table should be exactly equal to the values

used in the simulation. The small differences are due to the fact that MOD-

ULAR IR2 approximates the beam position at the skew quadrupole corrector

with Eq. 3.9, as mentioned previously. Some dependence between ∆ψci and

the determination of the linear errors by MODULAR IR2 was expected due to

this approximation, but the variations are minimal. This is due in part to the

fact that the simulations were done introducing errors exactly at the left skew

quadrupole corrector of the IR, which is also the place where MODULAR IR2

calculates the equivalent skew quadrupole error.

The real situation is that errors will be distributed in all 6 quadrupoles

of the IR, and hence the determination of the equivalent skew quadrupole
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error is expected to be sensitive to ∆ψci. Table 5.4 show results of simulations

where the skew error was located in the right triplet, while MODULAR IR2

extracted the equivalent skew quadrupole error at the left skew quadrupole

corrector.

Corrector diff phase A1 B1

(10−3 1/m ) (10−3 1/m)
bi4-th9 0.01 0.704 -1.021
bi12-th17 0.03 1.214 -0.909
bi4-th13 0.11 1.238 -1.025
bi4-th5 0.17 1.167 -0.634
bo3-th12 0.29 1.282 -0.602
bi5-th9 0.35 1.357 -0.592
bo2-th18 0.39 1.058 -1.688
bi5-th13 0.45 0.417 -1.654

Table 5.4: Closed orbits with skew errors in the right triplet of IR10 were
simulated and MODULAR IR2 was then used to extract the errors from the
simulated orbits. As before the linear errors used in the simulation were A1 =
0.001 1/m and B1 = −0.001 1/m.

In this case the difference between the simulated values and those ex-

tracted with MODULAR IR2 are significant, and they increase as the phase

advance gets closer to 0.5. According to Table 5.4 it seems that a phase ad-

vance of less than 0.1 will be adequate to determine linear errors. A program

called BPHASE ADV for the Blue ring, and YPHASE ADV for the Yellow

ring were written to calculate diff phase between a particular IR and all dipole

correctors in the ring. From the output of these programs it is then easy to

choose the dipole correctors with the proper phase advance to a specific IR.
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5.5 Effect of Nonlinear Errors in the Determi-

nation of Linear Errors

In Section 5.2 we have seen that gradient errors play an important role in

the determination of the skew quadrupole errors. It is then logical to ask if non-

linear errors are also important in the determination of either skew quadrupole

errors and gradient errors as well. In the following sections, some of the ex-

periments that were done with this purpose in mind are presented.

A very important aspect of this section is that will be the foundation

for the development of a novel technique to find nonlinear errors at the IRs

from beam measurements that will be completely describe in Chapter 7. This

technique will also facilitate the determination and automation of linear errors

at the IRs.

5.5.1 Experiment

The experiment is basically to shift the closed orbit by changing the

strength of a specific dipole corrector. This procedure was followed for protons

in the RHIC 2001 run where the strength was changed four times. Similar ex-

periments were made with gold ions in the RHIC 2001 run, but the strength

of the dipole correctors used was changed only twice.

As before, difference orbits are created respect to a baseline before doing

the action and phase analysis as explained in Section 2.2.
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5.5.2 Analysis

Since for this case the orbits to analyze are closed orbits, the resolution

of the measurements is better than for first turn trajectories. In particular,

the 2 BPMs located in the center of each IR can be used to calculate action

and phase inside that region. This extra information is used to independently

estimate errors at each triplet or specifically the magnetic kick errors ∆x′ and

∆y′.

The magnetic kick errors ∆x′ and ∆y′ are functions of the horizontal and

vertical beam position x0 and y0. These two last variables are not independent.

There is a relation between them that depends on the amount of coupling

present in the ring, and that is easily determined experimentally. This means

that ∆x′ and ∆y′ can be seen as quantities that depend on only one variable,

either, x0 or y0.

Fig. 5.2 is a typical graph showing ∆x′ (line with long dashes), ∆y′ (solid

line) and x0 as a function of y0 at the right triplet of IR 2, for a set of four

difference orbits taken after changing the strength of the vertical dipole cor-

rector bo7-tv13 to -0.1 mrad, -0.05 mrad, 0.05 mrad and 0.1 mrad (each point

in the graph corresponds to a different dipole corrector strength).

As can be seen in Fig. 5.2, the behavior of ∆x′ and ∆y′ as a function

of x0 is almost linear, pointing to the fact that the contribution of nonlinear

errors to the action and phase jump at the right triplet of IR 2 is very small

compared with the contribution from linear errors.
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Figure 5.2: Relation between magnetic kicks and beam position. This data
was taken in the right triplet of IR2 of the Blue ring. The different dots in all 3
lines correspond to different strength settings of the dipole corrector bo7-tv13.
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According to Eq. 1.56, only 2 coefficients (A1, B1) have to be determined

from the slopes of the curves of Fig. 5.2. Studies after the analysis done in

Section 5.2 show that coefficients B1 has to be different in the horizontal and

the vertical plane (see Section B.3) due to the fact that more than one magnet

is contributing to the magnetic error ∆x′ and ∆y′.

The correct equation correspond to the linear part of Eq. B.33 which is:

∆x′ = Aeq
1 y0 −Bx

1 x0

(5.21)

∆y′ = Aeq
1 x0 +By

1 y0

There are now 3 unknown coefficients: A1, B
x
1 B

y
1 and there are only 2 curves

that provide information about those coefficients. The third curve just gives

the relation between x0 and y0. It is then necessary to do a similar experiment

in the vertical plane that will provide the additional slope needed to find the

3 unknown coefficients.

Graphs obtained by changing the strength of the horizontal corrector (sub-

script a) and graphs obtained by changing the strength of the vertical corrector

(subscript b) lead to the following system of equations:

y0 = ma x0 + ba

(5.22)

x0 = mb y0 + bb
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and

∆x′ = cxa
1 x0 + constant

∆y′ = cya
1 x0 + constant

(5.23)

∆x′ = cxb
1 y0 + constant

∆y′ = cyb
1 y0 + constant

here, ma and mb , cxa

1 , cxb
1 , cya

1 and cyb
1 are constants that are directly found

from graphs like Fig. 5.2. Putting together Equations 5.21, 5.22 and 5.23, it is

possible to relate the unknown coefficients, Aeq
1 , Bx

1 and By
1 with the constants

extracted from the kick vs position graphs in the following way:

cxa
1 = ma A

eq
1 − Bx

1

cya
1 = Aeq

1 +ma B
y
1

(5.24)

cxb
1 = Aeq

1 −mb B
x
1

cyb
1 = mb A

eq
1 +By

1

Only 3 equations are needed from the previous set of equations to solve for

the 3 unknown coefficients. Standard methods are applied to the 3 selected

equations to obtain:
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Aeq
1 =

cya
1 − cyb

1 ma

1 −ma mb

Bx
1 =

cxa
1 − cya

1 ma + cyb
1 ma

2 − cxa
1 ma mb

−1 +ma mb

(5.25)

By
1 =

cyb
1 − cya

1 mb

1 −ma mb

Eq. 5.25 requires at least 3 different orbits.

There is an alternate way of finding A1, B
x
1 and By

1 with only 2 orbits. In

order to find the corresponding relation we write:

∆x′1 = −B1
x x1 + A1

eq y1

(5.26)

∆y′1 = A1
eq x1 +B1

y y1

and similarly for the second orbit:

∆x′2 = −B1
x x2 + A1

eq y2

(5.27)

∆y′2 = A1
eq x2 +B1

y y2

Choosing only 3 of these equations it is possible to find the linear coefficients

with the relations:

Bx
1 =

y1 ∆x′2 − y2 ∆x′1
− (x2 y1) + x1 y2
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By
1 =

x1
2 ∆x′2 + x2 y1 ∆y′1 − x1 (x2 ∆x′1 + y2 ∆y′1)

y1 (x2 y1 − x1 y2)
(5.28)

Aeq
1 =

x1 ∆x′2 − x2 ∆x′1
− (x2 y1) + x1 y2

The 2 orbits used to evaluate these coefficients should be independent of each

other. That means that the orbits should be excited with different dipole

correctors and with a difference of phase advance different to π or any multiple

of π.

Since the orbits must be independent of each other they cannot fulfill

the phase advance requirement (∆ψ ≈ π/2) simultaneously. This has con-

sequences in the determination of the beam position at the skew quadrupole

corrector with Eq. 3.9. Eq. 3.9 is an approximation that relies on the fact that

the phase advance from the nearest BPM to the skew quadrupole corrector

is very small. The importance of this small phase advance is determined by

the difference phase advance between the dipole corrector used to excite the

betatron oscillation and the interaction region. The farther this phase advance

is from 90 degrees the bigger is the effect on the difference phase advance be-

tween skew corrector and the nearest BPM to the skew quadrupole corrector.

If accurate results are required this difference must be taken into account in

the calculations.
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5.5.3 Results for Proton Experiments

Different Horizontal and Vertical Gradients

If different equivalent gradients are assumed in the horizontal and the

vertical plane it is necessary to use difference orbits produced by a horizontal

and a vertical dipole corrector to obtain the linear errors. Table 5.5 shows

several pair of dipole correctors that were used to obtain the difference orbits

of protons required to evaluate the errors at the left triplet of IR8.

Each pair produces two graphs like Fig. 5.2 which usually are straight

lines. The slopes of the straight lines are then used in Eq. 5.25 to find the

corresponding errors.

Several pairs of dipole correctors are used in order to evaluate the un-

certainty of the measurements that are mainly due to the difference phase

advance ∆ψci, as discussed earlier.

The same procedure is followed for most of the RHIC triplets leading to

Table 5.6. It is important to mention that most of the triplets have small skew

errors as expected, since the skew quadrupole correctors were on when the

experiments were done. Another important comment is that difference orbits

produced with the same pair of dipole correctors are used to evaluate errors

in more than one IR.

Table 5.7 shows the results obtained from the analysis of difference or-

bits in the Yellow ring. Only two pairs of dipole correctors were used in each

case. The uncertainty was calculated as half the difference between the mea-
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Corrector Triplet A1 Bx
1 By

1

(10−3 1/m) (10−3 1/m) (10−3 1/m)
bo2-th14 7 -0.006 0.655 0.211
bo6-tv15

bo3-th10 7 -0.003 0.641 0.213
bo6-tv15

bo3-th12 7 -0.114 0.788 0.206
bo6-tv15

Average 7 -0.067 0.694 0.210
Error ±0.020 ±0.050 ±0.002

Table 5.5: Sample of error analysis done with protons orbits at the left triplet
of IR8 in the Blue ring.

surements obtained for each pair of correctors. Again, the skew quadrupole

errors were small, as expected, since the skew quadrupole correctors were on

when the difference orbits were taken. The errors shown on Table 5.6 and

Table 5.7 put a limitation in the minimum skew error that can be measured

at around 10−4 1/m. Many of the skew errors fall around or maybe below

this value, as was expected, since the local skew correctors were on when the

data to produce Table 5.6 were taken. The magnitude of the error associated

with each measurement depends more on the dipole corrector that is chosen

to produce the betatron oscillations, than on the BPM measurements. This

is an indication that the measurements are sensitive to the difference of phase

advance between the dipole corrector and the IR. Even though the orbits used

to find the errors at a particular IR were chosen with optimal phase advance
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Triplet A1 Bx
1 By

1

(10−3 1/m) (10−3 1/m) (10−3 1/m)
1 −0.866 ± 0.152 −0.655 ± 0.013 4.674 ± 1.805
2 −0.270 ± 0.001 −3.991 ± 0.000 0.961 ± 0.005
7 −0.067 ± 0.024 0.690 ± 0.040 0.200 ± 0.002
8 0.162 ± 0.031 −0.280 ± 0.030 −0.355 ± 0.003
9 −0.048 ± 0.007 −0.235 ± 0.009 −0.850 ± 0.010
10 0.206 ± 0.027 1.490 ± 0.019 0.715 ± 0.000
11 0.076 ± 0.031 −6.676 ± 1.128 4.618 ± 0.003
12 −0.316 ± 0.073 4.766 ± 0.307 −6.398 ± 0.014

Table 5.6: Linear errors in the Blue ring triplets. Proton orbits were used in
this analysis.

Triplet A1 Bx
1 By

1

(10−31/m) (10−31/m) (10−31/m)
1 0.016 ± 0.014 1.889 ± 0.054 −1.21 ± 0.001
2 0.138 -1.248 0.861
9 0.565 ± 0.038 1.248 ± 0.081 −1.007 ± 0.004
10 0.147 ± 0.044 −2.675 ± 2.120 1.030 ± 0.003

Table 5.7: Linear errors in Yellow Ring Triplets. Proton orbits were used in
this analysis.

in one of the planes, it was not always possible to meet the same condition in

the other plane. It is possible to have complete control over this problem if

a horizontal and vertical dipole corrector are used simultaneously to produce

the betatron oscillation.

Another possible source of error is the slight difference in tunes between

the model used to do the analysis and the real tune of the machine. This

difference creates a slight slope in the graphs of phase vs s in the arcs. A

re-tuning of the lattice model should reduce this tilt in the phase. Doing all
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Triplet A1 B1 Correctors Plane
(10−3 1/m) (10−3 1/m)

1 −1.085 ± 0.005 −1.770 ± 0.020 Vertical
2 1 0.775 ± 0.005 Vertical
7 0.005 ± 0.009 0.680 ± 0.035 Horizontal
8 0.083 ± 0.104 −0.287 ± 0.029 Horizontal
9 0.018 ± 0.001 −0.840 ± 0.015 Vertical
10 0.120 ± 0.050 1.290 ± 0.010 Horizontal
11 −2.160 ± 0.830 −6.270 ± 0.707 Horizontal
12 1.450 ± 0.290 4.480 ± 0.270 Horizontal

Table 5.8: Error analysis in Blue ring assuming that the gradients are the
same in both planes

previous corrections it is not unreasonable to expect measurements of the skew

errors with accuracies at the 10−5 1/m level.

Same Horizontal and Vertical Gradients

If it is assumed that the horizontal and vertical equivalent gradients are

the same (as it was done when the action and phase analysis was applied to

RHIC orbits for the first time [28]) it is then possible to find the linear coef-

ficients with only one orbit produced by either a horizontal dipole corrector,

or by a vertical dipole corrector. This assumption seems to work well when

the betatron oscillation in the plane opposite to the exciting dipole corrector

is very small compared to the betatron oscillation in the plane of the exciting

dipole corrector. Table 5.8 shows that indeed the skew quadrupole errors cal-

culated in this way are very close to the ones reported in Table 5.6, but with

higher uncertainties. Gradient errors calculated with orbits produced with

a horizontal dipole corrector can be compared with the horizontal gradients
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found previously in Table 5.6. The same is true for the vertical plane. This

analysis it is interesting because allows to approximate 2 linear coefficients

with only one difference orbit. It is shown here also because it was the first

approach used to analyze the data.

5.5.4 Results for Gold Ion Experiments

Dipole corrector strengths were varied only twice for gold ions, but for

each strength several orbits were taken. Two different strengths are enough to

calculate linear errors, assuming that nonlinear errors are insignificant when

compared to linear errors. As an example, the graphs of magnetic kicks for the

experiment performed with yi10-th13 are shown in Fig. 5.3. Notice that there

are two group of points in each curve of Fig. 5.3. These points correspond

to different orbits taken with the same strength, and they give an idea of the

uncertainty in the determination of the magnetic kicks.

In order to apply Eq. 5.25 it is then neccesary to have a similar graph to

Fig. 5.3, but this time the closed orbit should be shifted by a vertical dipole

corrector. Such a graph is shown in Fig. 5.4, where the vertical dipole corrector

yi10-tv12 is used. Curves of ∆y′ vs y0 and x0 vs y0 are repeatable, since the

dots in each group are very close to each other. This is not the case for ∆x′

vs y0, where the uncertainty is very large. It is possible to track the reason

why the uncertainty is so large by looking at the orbits behind the points in

Fig. 5.4. One of such orbits is shown in Fig. 5.5. It is clear that the fit is

not as good as it is in Fig. 3.1 which is also obvious in the actions and phases
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Figure 5.3: Relation between Magnetic kicks and Beam Position for Gold ions
in triplet 7 of the Yellow ring when dipole corrector yi10-th13 is used to shift
the closed orbit.
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Figure 5.4: Relation between Magnetic kicks and Beam Position for Gold ions
in triplet 7 of the Yellow ring when dipole corrector yi10-tv12 is used to shift
the closed orbit.
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Figure 5.5: a) Yellow ring difference orbit. b) Lattice representation of RHIC.
c) Action analysis of orbit in a). d) Phase analysis of the orbit in a). The
model (solid line in window a)) follows irregularly the BPM data and action
and phase can hardly be considered as constant values.
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having large variations in the arcs.

The fast pace of RHIC commissioning during the year 2001 only permitted

difference orbits to be taken with gold ions in the Yellow ring.

Table 5.9 shows the errors that were obtained in some of the Yellow

triplets. When not enough useful orbits were available to do the analysis

with Eq. 5.25, Eq. 5.17 were used to extract A1 and B1 from a single orbit.

According to studies in the previous section, this formula seems to be a good

approximation to find 2 of the 3 linear errors.

Corrector Triplet A1 Bx
1 By

1

(10−3 1/m) (10−3 1/m) 10−3 1/m
yi10-tv14 3 1.55 -2.82

yi10-th13 & yi10-tv14 4 0.19 -4.40 - 2.05
yi10-tv12 5 -1.32 6.34

yi10-th11 & yi10-tv12 6 -3.15 3.30 6.03
yi10-th13 7 0.55 -3.44
yi10-th13 8 -0.98 5.07
yi10-th13 11 0.68 -1.90
yi10-th13 12 -0.63 2.77

Table 5.9: Linear errors in some of the Yellow triplets obtained from gold ion
difference orbits. When only difference orbits created with one corrector are
available for a specific IR Eq. 5.17 is used instead of Eq. 5.25

5.5.5 Tune correction of the lattice model

Graphs of phase and action show that there is a slight tilt of these two

variables in the arcs of the accelerator where otherwise phase and action should

be constant (see Fig. 5.6). The slight tilt is due to a difference between the

real tunes of the machine and the tunes of the model. Hence, it is necessary
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Figure 5.6: a) Difference orbit taken during the RHIC 2001 run. b) Lattice
representation of RHIC. c) Action analysis of the orbit in a). d) Phase analysis
of the orbit in a).The tilt on the curves of phase is due to difference between
the real tunes of the machine and the tunes of the model.
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to re-tuned the model until the tilt disappear.

All the analysis done in the previous section were repeated with a re-tuned

model with results that can be seen in Table 5.10. There are no significant

changes in the linear coefficients when they are compared with the correspond-

ing values in Table 5.6. These results seem to indicate that small variations in

tune don’t have significant effects in the determination of the linear errors.

Triplet A1 Bx
1 By

1

(10−3 1/m) (10−3 1/m) (10−3 1/m)
7 -0.067 ± 0.024 0.870 ± 0.020 0.210 ± 0.001
8 0.199 ± 0.025 0.028 ± 0.027 -0.350 ± 0.003
9 -0.048 ± 0.007 -0.230 ± 0.009 -0.850 ± 0.010
10 0.206 ± 0.027 1.496 ± 0.019 0.716 ± 0.001
11 0.077 ± 0.031 -6.680 ± 1.130 4.610 ± 0.003
12 -0.320 ± 0.070 4.770 ± 0.310 -6.399 ± 0.014
1 -0.870 ± 0.150 -0.660 ± 0.013 4.670 ± 1.800
2 -0.270 ± 0.001 -3.990 ± 0.000 0.960 ± 0.005

Table 5.10: Linear Errors from difference orbits in the Blue ring. The model
has been re-tuned from Qx = 28.22 to Qx = 28.12.

5.6 Comparison between RHIC Run 2000 and

RHIC Run 2001

Table 5.11 shows the relations between the different coupling measure-

ments made during RHIC Run 2000 and RHIC Run 2001.

The first column shows the values to which the skew quadrupole correctors

were set in the corresponding triplets during RHIC Run 2001. The second

column shows the measurement of the skew errors made during RHIC Run
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Figure 5.7: a) Difference orbit taken during the RHIC 2001 run. b) Lattice
representation of RHIC. c) Action analysis of the orbit in a). d) Phase analysis
of the orbit in a).The tilt on the curves of phase gets significantly reduced when
the horizontal tune of the model is changed from 28.22 to 28.12
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Triplet Corrector Residual Total Total IR Orbit Bump Action-
(2001) Triplet (2000) Phase Jump

7 -0.8 0 -0.8 -0.84
8 1.3 0.1 1.4

0.6
1.32

0.67

9 0.35 -0.035 0.32
10 0.65 0.13 0.78

1.1 1

1 1 -1.1 -0.1 -0.22
2 0 1 1

0.9
1.23

0.99

Table 5.11: Comparison between skew error measurements done in the Blue
ring during the run 2000 vs the corresponding measurements done during the
run 2001 (All values are given in 10−3 1/m).

2001 (see Table 5.8) with the action-phase jump method. This is naturally

called the residual error since this is the error still present after turning on

the corrector. The total triplet column corresponds to the sum of the previous

two columns. The Total IR column is the sum of the left and right triplets of

each IR from the previous column.

The Total Triplet column and the Total IR column are calculated with

the purpose of making comparison with measurements made during Run 2000

when the correctors were off.

The Orbit Bump column shows the measurements of the skew errors made

during Run 2000 with the Orbit Bump Method (see Table D.1). A good

agreement between this last column and the total triplet column can be verified

on the table. The other two columns to be compared are the action-phase jump

column and the Total IR column. The action-phase jump column corresponds

to the measurement made during RHIC Run 2000 with action-phase jump

method (see Table 3.2). There is also good agreement in this case as can be
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verified on the table.

The agreement between the 2000 and the 2001 measurements are a little

surprising since they were done with different lattices. However, the result is

in agreement with the model predictions, as explained below.

The equivalent skew error depends on the individual gradients at each

quadrupole of the triplet, and the equivalent skew errors also depend on the

beta functions, as can be seen from Equations 1.54 and B.6. The lattice used

during the RHIC 2000 Run differs with the corresponding lattice used in RHIC

2001 run only at IRs 6 and 10. The beta function at the interaction point β∗

at these IRs was equal to 8 meters for the 2000 lattice, while the same quantity

was equal to 3 meters for the 2001 lattice. In order to achieve the difference

in β∗ the strengths of the quadrupoles at these IRs must be different. The

difference in strengths, however, is as small as 2 percent (see Table 5.12).

The role of the beta functions in the determination of the equivalent skew

quadrupole errors (see Table 5.13) was evaluated by direct calculation with

the two different lattices assuming the roll angles were known . Calculated

equivalent skew errors in IR10 and the left triplet of IR6 had a variation below

2 percent. Calculated equivalent skew errors in the right triplet of IR6 showed

a relative large variation (more than 28 percent).
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Triplet Quadrupole k Run 2000 k Run 2001
1/m 1/m

Q3I6 0.1149 0.1165
Q2I6 -0.1884 -0.1900Left IR6
Q1I6 0.0808 0.0828
Q1O6 -0.0808 -0.0828
Q2O6 0.1884 0.1900Right IR6
Q3O6 -0.1149 -0.1165
Q3I10 0.1149 0.1165
Q2I10 -0.1884 -0.1900Left IR10
Q1I10 0.0808 0.0828
Q1O10 -0.0808 -0.0828
Q2O10 0.1884 0.1900Right IR10
Q3O10 -0.1149 -0.1165

Table 5.12: Strengths of the Triplet Quadrupoles at IR6 and IR10. The third
column corresponds to the nominal strength of the quadrupoles used in the
Blue ring during the Gold run in 2000. The fourth column corresponds to the
nominal strengths used in the Blue ring during the proton run in 2001.
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Triplet A1 (10−3 1/m) A1 (10−3 1/m) Diff.
Gold (2000) Proton (2001) %

1 0.0242 0.0243 0.246
2 1.5250 1.5241 -0.059
3 -0.6432 -0.6438 0.085
4 0.2931 0.2922 -0.293
5 0.6145 0.5956 -3.170
6 0.0374 0.0524 28.542
7 -1.5727 -1.5731 0.025
8 1.2007 1.2000 -0.057
9 0.4804 0.4819 0.317
10 1.6918 1.7160 1.411
11 -0.1151 -0.1163 1.055
12 -1.1693 -1.1684 -0.072

Table 5.13: Calculated skew quadrupole errors from Eq. B.6 for the Gold
lattice used during the RHIC 2000 run and the proton lattice used during the
RHIC 2001 run. The roll angles were assumed to be twice the field angles
measured before the magnets were installed in the tunnel (see Chapter 6).
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Chapter 6

Skew Error Measurements and
Roll Angle Measurements

6.1 Introduction

As shown in Chapter 2, measurements based on orbit data taken during

the RHIC 2000 run suggested that the sources of linear coupling in the machine

were skew quadrupole errors produced by roll misalignments in the triplets at

each IR. This hypothesis can be tested if the roll angles of the triplets are

measured and their skew effect is calculated and compared with the measured

skew errors. This is the main goal of this chapter where we will compare 2

different set of roll angle data with the corresponding skew errors obtained

from the action and phase analysis.
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6.2 Skew Error Measurements and 2φ

Hypothesis

The measured skew errors at the IRs suggest that the roll angles can be

as big as several mrad. These values are extremely big since the accuracy of

the alignment procedure was expected to be as low as tenths of mrad.

A possible answer for this problem can be found in the alignment proce-

dure of the magnet. Before placing the magnets in the tunnel it is neccesary to

measure what is called the field angle. The field angle is the angle between one

of the transverse symmetry axis of the magnetic field and the corresponding

transverse symmetry axis of the iron that supports the coil. Ideally this angle

should be equal to zero but under real conditions this angle can be as big as

several mrad for a typical RHIC magnet. It is then neccesary to measure the

field angle for all the magnets and then rotate them in opposite direction to

the field angle when they are placed in the tunnel. In this way, the effect of

the magnetic field roll is minimized.

One possibility to explain the large angle implied by the skew error mea-

surements is that the magnets were rotated in the same direction that the

field angle giving rise to a total roll angle equal to twice the field angle (see

Fig. 6.1). This hypothesis can be tested using the skew error measurements

and comparing them with the values obtained from:

A1 =

∑3
i=1(−2φi

fi
)
√

βi
xβ

i
y

√

βTrip
x βTrip

y

(6.1)

Eq. 6.1 can be easily derived from Eq. B.6 and Eq. 1.54. The variables fi,
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X

Y

Roll angle = 2 Field Angle 

Figure 6.1: In order to cancel the field angle, the magnets are rotated opposite
to the field angle when they are placed in the tunnel. It is possible that during
this alignment procedure the magnets at the IR were rotated in the same
direction that the field angle giving rise to a total roll angle equal to twice the
field angle.
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φi, β
i
x, β

i
y in Eq. 6.1 correspond to the focal lengths, roll angles and beta

functions (in both planes) of each individual quadrupoles that make compound

the triplet. βTrip
x , βTrip

y are the beta functions at the place where the equivalent

skew quadrupole error is calculated, in this case at the position of the skew

quadrupole corrector.

According to Fig. 6.2 the skew errors obtained from the orbit measure-

ments and the skew errors obtained from the database angles seem to have a

good correlation at least for the stronger errors in the Blue ring.

The use of Eq. 6.1 requires some special considerations related with the

way the field angles were measured and how they were placed in the ring.

First, the field angle was always measured from the lead end of the magnet

and second the triplet magnets are placed with their lead ends not always

pointing in the same direction but as illustrated in Fig. 6.3. The position of

the magnet lead end respect to the beam direction determines whether the

magnet lead end is located CW (clockwise) or CCW (counter clockwise) (see

Fig. 6.4). If the magnet lead end is located CW the database angles can be

replaced in Eq. 6.1 with no change of sign but if the magnet lead end is located

CCW the sign of the database angles must be changed.

6.3 Roll Angle Measurements and 2φ Hypoth-

esis

During the 2002 shutdown period it was possible to directly measure the

roll angles in some of the triplets and then prove the 2φ hypothesis directly.
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Figure 6.2: Skew errors from orbit measurements and skew errors calculated
from the database field angles are compared. The measured errors were taken
from Table 5.6 and Table D.1.
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NLELE

Right TripletLeft Triplet

Q3 Q2 Q1 Q2 Q3Q1

a)

b)

Figure 6.3: a) Representation of a RHIC IR quadrupole. b) Configuration of
the RHIC IR quadrupoles at any IR. The quadrupoles in the IRs are placed
in the tunnel with their lead ends not always facing the same direction.

The result of such comparisons can be seen on Fig. 6.5. The comparisons

between the two sets of data show a relatively good agreement. Again, some

conventions must be taken into account to do the comparisons. All the angles

were measured from the Q1 no lead end (see Fig. 6.3 and Fig. 6.6). This means

that the roll angles of the left triplet have the proper orientation to use Eq. 6.1

and no sign change is required. On the other hand, the sign of measured roll

angles of the right triplet must be changed to use Eq. 6.1. The measured skew

errors were also compared with the calculated skew errors using the measured

roll angles (see Fig. 6.7). The positive results of Fig. 6.7 are a strong evidence

that the major sources of coupling at the IRs are indeed roll quadrupoles.

Results of Fig. 6.2 and Fig. 6.7 are summarized in Fig. 6.8 where the
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Ring Center 

Beam 

Ring Center 

Lead End 

Lead End 

LE is CCW

LE is CW

a)

b)

Figure 6.4: a) Magnet located in clockwise direction (CW). b) Magnet located
in counterclockwise direction (CCW).
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Figure 6.5: The roll angles of some of the IR quadrupoles were measured
during the RHIC 2002 shutdown period and compared with the twice the field
angles measured before the installation of the magnets.

108



Figure 6.6: The field angles were measured in the tunnel during the RHIC
2002 shutdown period by the magnet department at BNL. All the angles were
measured from the Q1 no lead end and they are reported in the last column
of the table (J. Animesh Courtesy).
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Figure 6.7: The measured A1 for all triplets of the Blue ring are compared
with the calculated value that uses the measured roll angles.
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strength of the corrector has been added. Except for few triplets the mag-

netic measurements are in agreement with the orbit measurements and the

hypothesis that the triplet magnets have a roll of twice their original field

angle.
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Figure 6.8: The measured values of A1 found in Blue and Yellow triplets
are compared with the corresponding values calculated from the measured
roll angles, the 2 Field angle hypothesis and the value to which the skew
quadrupole correctors were set.
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Chapter 7

Nonlinear Errors

Section 5.5 describe an experiment aimed to evaluate the nonlinear effects

in the determination of the linear coefficients A1 and B1. Although, the ef-

fect of the nonlinearities were found to be significantly smaller that the linear

effects on the mentioned experiments, in this chapter we will enhance the tech-

nique used in Section 5.5 hoping it would become sensitive enough to measure

nonlinear coefficients in the RHIC triplets, specially sextupole components.

7.1 The Method

In general, any deviation from the design behavior of a magnet can be

expressed by a kick error ∆x′ which is equal to:

∆x′ = −∆Byl

Bρ

(7.1)

where ∆By is the vertical component of the magnetic field error, l is the total

length of the magnet and Bρ is the rigidity. There is a similar equation for the
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kick in the vertical plane and it is given by:

∆y′ =
∆Bxl

Bρ

(7.2)

The magnetic error can be either a dipole , a quadrupole or any other mul-

tipolar field component.Expressing the magnetic fields in function of their

multipolar components we have (see Eq. A.3):

∆x′ = (A1y0 − B1x0 + 2A2x0y0 +B2(−x2
0 + y2

0) + ...)

(7.3)

∆y′ = (A1x0 +B1y0 + 2B2x0y0 + A2(x
2
0 − y2

0) + ...)

A1 corresponds to the skew quadrupole error while B1 corresponds to the

gradient quadrupole error, x0 and y0 are the horizontal and vertical position of

the beam at some position s0 inside the magnetic structure under consideration

and B2 and A2 are the normal and skew sextupole components.

Expansion 7.3 is no longer valid when more than one magnet is involved

in the magnetic kick. Equivalent coefficients will arise that depend on the

individual coefficients of the magnets that build the whole magnetic structure

for which the equivalent magnetic want to be determined and therefore Eq. 7.3

will change (see Eq. B.33). If the magnetic structures are RHIC triplets, it is

shown in Appendix B (Eq. B.33) that the equivalent magnetic kick is given

by:

∆x′eq = Aeq
1 y0 − Bx

1x0 + 2Ax
2x0y0 −Bxa

2 x2
0 +Bxb

2 y
2
0 + ...
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(7.4)

∆y′eq = Aeq
1 x0 +By

1y0 + 2By
2x0y0 + Aya

2 x
2
0 − Ayb

2 y
2
0 + ...

In this case the coefficients and s0 have a slightly different meaning than the

ones in Eq. 7.3. Each of the coefficients of Eq. 7.4 represents the multipole that

will produce the same effect as the corresponding 3 multipoles in the triplet

under study when located at the position s0.

As was seen in the previous chapter ∆x′eq and ∆y′eq can be determined ex-

perimentally from difference orbit analysis and the beam positions (horizontal

and vertical) at s0 can be easily inferred from the closest BPMs to s0. One

possible experiment to determine the multipole coefficients is to excite several

betatron oscillations all of them with different amplitudes. That will provide

a set of points ∆x′eq , ∆y′eq, x0 and y0 (one point for every different amplitude)

which can be used to evaluate the coefficients in Eq. 7.4.

These coefficients are directly related with the strengths that should be

put in the correctors to locally correct for the error as was shown for the skew

quadrupole errors in Chapter 4.

7.2 Experiment to Find non Linear Errors

This experiment is essentially the same experiment presented in Sec-

tion 5.5 except that 10 different corrector strengths are used instead of four

and only two dipole corrector are used: bo6-th14 and bo6-tv17.

115



7.2.1 Analysis

Analysis for individual triplets doesn’t seem to be possible from the dif-

ference orbits obtained for this experiment since the interaction region BPMs

didn’t register any measurement. However it is possible to find equivalent

multipole errors for the whole interaction region. The dipole correctors used

has an optimal phase advance to do the analysis at interaction region 8.

As it has been discussed earlier the linear and nonlinear errors give a kick

to the beam ∆x′ in the horizontal and ∆y′ in the vertical plane that can be

evaluated at the IR of interest from the difference orbits. Graphs of ∆x′ vs x

or y and ∆y′ vs x or y can then be drawn exactly as in the linear experiments.

Fig. 7.1 shows the graphs obtained from the horizontal dipole corrector

difference orbits while Fig. 7.2 show the corresponding graphs obtained from

the vertical dipole corrector difference orbits. The graphs are mainly linear

but it is possible to note a slight curvature specially in Fig. 7.1 which might be

an indication of the non linear components present at the interaction region.

Fitting the graphs produced by the horizontal dipole corrector to the

polynomial equation:

∆x′ = bxa + cxa
1 x0 + cxa

2 x0
2 + ...

(7.5)

∆y′ = bya + cya
1 x0 + cya

2 x0
2 + ...
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Figure 7.1: Graphs of magnetic kick vs beam position extracted from BPM
measurements obtained by changing the strength of the horizontal dipole cor-
rector bo6-th14. Even though the linear errors dominated these curves, nonlin-
ear behavior are also present and it is possible to determine such nonlinearities
from polynomial fits.
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Figure 7.2: Graphs of magnetic kick vs beam position extracted from BPM
measurements obtained by changing the strength of the vertical dipole cor-
rector bo6-tv17. Some of the points in these graph don’t follow the expected
linear trend of the curves in some cases due to poor fittings of the original
orbits.
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and fitting the graphs produced by the vertical dipole corrector to the poly-

nomial equation:

∆x′ = bxb + cxb
1 x0 + cxb

2 x0
2 + ...

(7.6)

∆y′ = byb + cyb
1 x0 + cyb

2 x0
2 + ...

it is possible to find the coefficients cxb
1 , cxb

2 , cyb
1 and cyb

2 which can be directly

related to the equivalent multipolar coefficients. Eq. 5.25 shows the relation

between the multipolar coefficients and the equivalent linear errors. The re-

lation between the quadratic coefficients and the equivalent sextupole errors

will be shown in the next paragraph.

Assuming that the contribution of the octupole components are very small

it is possible to rewrite Eq. 7.4 as:

∆x′ = −Bx
1 x− Bxa

2 x2 + A1 y + 2Ax
2 x y +By

2 y
2

(7.7)

∆y′ = A1 x+ Ax
2 x

2 +By
1 y + 2By

2 x y − Aya
2 y2

Using the relations between y and x, y = max + ba, and Eq. 7.5 in Eq. 7.7, it

is found that:

cxa
2 = Bxa

2 + 2Ax
2 ma +By

2 ma
2
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(7.8)

cya
2 = Ax

2 + 2By
2 ma − Aya

2 ma
2

Similarly for the coefficients associated with the vertical dipole corrector orbits

we have:

cxb
2 = By

2 + 2Ax
2 mb − Bxa

2 mb
2

(7.9)

cyb
2 = −Aya

2 + 2By
2 mb + Ax

2 mb
2

where mb comes from the relation x = mby + bb. Eq. 7.8 and 7.9 define a four

by four linear equation system with solution:

Aya
2 = −

(

−cyb
2 + 2 cxb

2 mb + 3 cyb
2 mamb − 3 cya

2 mb
2 − 2 cxa

2 mb
3 + cya

2 mamb
3

(−1 +ma mb)
3

)

Ax
2 = −

(

cya
2 − 2 cxb

2 ma − cyb
2 ma

2 + cya
2 mamb − cyb

2 ma
3mb + 2 cxa

2 ma mb
2

(−1 +mamb)
3

)

(7.10)

By
2 = −

(

cxb
2 − 2 cya

2 mb + cxb
2 ma mb + 2 cyb

2 ma
2mb − cxa

2 mb
2 − cxa

2 ma mb
3

(−1 +ma mb)
3

)

Bxa
2 = −

(

−cxa
2 + 2 cya

2 ma − 3 cxb
2 ma

2 − 2 cyb
2 ma

3 + 3 cxa
2 ma mb + cxb

2 ma
3mb

(−1 +mamb)
3

)

7.2.2 Results

Before fitting the the curves in Fig. 7.1 and Fig. 7.2 it is neccesary to

make some observations about these figures.
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The curve that relates ∆y′ vs y0 in Fig. 7.2 has 2 points that are well

beyond the general trend of the other points of the same curve. Such 2 points

correspond to the orbits that were taken when the strength of the dipole

corrector bo6-tv17 was set to +0.02 radians and -0.02 radians. While the

orbit taken with dipole strength equal to -0.002 radians doesn’t fit properly to

the model, the orbit taken with dipole strength equal to +0.002 radians agrees

pretty well with the model. The only possibility to explain the problem in the

+0.02 setting is the presence of a systematic error related with the baselines.

Discarding the 2 anomalous points in Fig. 7.2, the fit leads to the coeffi-

cients that are listed in Table 7.1

cxa
1 -0.399 ± 0.006
cxb
1 -0.185 ± 0.002
cya
1 0.137 ± 0.003

cyb
1 -0.151 ± 0.002
ma -0.104 ± 0.002
mb -0.070 ± 0.003
cxa
2 -0.0034 ± 0.0025
cxb
2 0.0062 ± 0.0011
cya
2 -0.0026 ± 0.0010

cyb
2 -0.0130 ± 0.0003

Table 7.1: Linear and Quadratic Coefficients after fitting data to Eq. 7.5
and Eq. 7.6. Linear coefficients are given in µrad/mm while the quadratic
coefficients are given in µrad/mm2.

In order to find all coefficients with subscript a the graphs of Deltas were

fit to a quadratic polynomial, then a third order polynomial and so on. χ2

was evaluated in each case and the polynomial which give the χ2 closer to one
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was chosen. The fitting procedure was done with a special routine of EXCELL

(SOLVED) which easily allow to find the coefficients of the polynomial that

minimize the χ2.

This procedure looks to minimize as much as possible the systematic error

produced when significant multipole components are ignored in the fitting or

when more multipoles than needed are consider in the fitting.

The coefficients with subscript b didn’t go trough the previous procedure.

Only one fit to a cubic polynomial was done for those coefficients since that was

the most common optimal polynomial in the analysis to obtain the coefficients

with subscript a.

The errors shown on the right hand side are propagated errors and no

direct statistical error measurements like in the previous tables.

The calculation of the propagated errors were done according to reference

[32]. If a function of the form:

y(xi) =
m
∑

k=1

akfk(xi) (7.11)

is linear in the parameters ak and the functions fk(xi) are the monomials

f1(x) = 1, f2(x) = x,f3(x) = x2 and so on, then it is possible to define a

matrix:

αlk ≡
∑

[

1

σ2
i

fl(xi)fk(xi)

]

(7.12)

with an inverse α−1 that correspond to the error matrix σ2. The diagonal

terms of this matrix are the variances associated with the linear coefficients,

quadratic coefficients, cubic coefficients, etc.
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In order to apply Eq. 7.12 it is necessary to know the uncertainty as-

sociated with each yi point σi. This uncertainty can be calculated from the

uncertainty associated with each xi and propagating this uncertainty through

Eq. 7.7. The uncertainty associated with each xi was calculated from the vari-

ations of this variable when different baselines taken during the experiment

are used to produce the difference orbits.

A perl script (GET COEFF ERROR) was created to calculate the prop-

agated uncertainty σi and the α matrix from a set of 5 graphs of delta vs

positions. Such graphs differ only in the baseline used in each case.

Once the α matrix is found, it is fed into a Mathematica notebook to

invert the matrix and find the error matrix for the coefficients.

Linear regressions of the curves x0 vs y0 and y0 vs x0 performed in the

application software XMGR also give the errors associated with ma and mb.

The next step is the calculation of the equivalent multipole coefficients

with Eq. 7.10 and their propagated errors with the general formula:

σ2
z =

∑



σ2
i

(

∂z

∂yi

)2


 (7.13)

Those calculations has been done in Mathematica notebooks (sext co-

eff2.nb and linear3coeff2.nb) with results that can be seen on Table 7.2. Linear

errors have small uncertainties associated while nonlinear errors have associ-

ated errors of the same order of magnitude of the error itself. Further studies

are required to determine what variables causes the biggest uncertainties in

the non linear coefficients. By now, it is possible to guess that if the number of
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Aeq
1 0.122 ± 0.003

Bx
1 0.386 ± 0.001

By
1 -0.142 ± 0.002

Aya
2 0.0121 ± 0.0003
Ax

2 -0.0012 ± 0.0011
By

2 0.0061 ± 0.0011
Bxa

2 0.0037 ± 0.0025

Table 7.2: Equivalent Multipole Coefficients.The units are µrad
mm

or 10−3 1
m

for

the linear coefficients and µrad
mm2 or 1

m2 .

different settings of the dipole correctors are increased the uncertainty will go

down. Also a better behavior of the vertical plane orbits will improve the situ-

ation. Measurements in the triplets and no in the whole interaction region will

probably reduce the uncertainty too. Eq. 7.12 shows clearly that an increase of

the amplitude of the oscillations will increase alpha making the errors smaller.

Original experiments were done by exciting betatron oscillations in one plane

and looking to the induced oscillations in the opposite plane. Next experiment

will be done with betatron oscillations excited in both planes which will de-

crease the uncertainty according to the analysis done previously. At this time

(August 2002) there is no data available to do direct comparisons with the val-

ues found for the sextupole coefficients in blue ring in the particular IR that

was studied. However, measurements were done before the end of the RHIC

run 2002 in the yellow ring with an alternate technique. This measurements

have at least the same order of magnitude (see the RHIC elog book Jan 3 2002

and [33]) as the values found here for the sextupole coefficients.
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Chapter 8

Calibration Experiments

RHIC has packages of correctors that range from dipole correctors to do-

decapole correctors that have been calibrated before installation in the tunnel.

The correctors are activated through a special software (Ramp Editor Man-

ager) that allows to set any corrector to a desired corrector strength.

Experiments in this chapter are aimed to find the relation between the

ramp editor manager strengths to which some quadrupole and sextupole cor-

rectors are set and the corresponding values obtained with the action and

phase analysis of the resultant orbits.

8.1 Calibration Experiments for Skew

Quadrupole Correctors

This experiment consist of a set of first turn difference trajectories taken

with different settings in a particular skew quadrupole corrector. Action and

phase analysis and Eq. 5.17 then allow to measure the particular strength to
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which the skew quadrupole was set.

Fig. 8.1 shows the relation between the set value (number written in the

RHIC ramp editor window) on the right skew quadrupole corrector at IR8

and the corresponding measured skew strength obtained from the action and

phase analysis.

In order to find the A1 from the orbit measurements, it is neccesary to

use the horizontal and the vertical plane of the orbit. The fit of the horizontal

orbit to the model is good but not in the vertical plane. Nonetheless, the

overall trend of the calibration curve shown in Fig. 8.1 is as expected. Notice

also that the slope is negative, which is in agreement with the results obtained

in Appendix F, Eq. F.5.

8.2 Calibrating Gradient Error

Measurements

It was shown in Chapter 5 that precise measurements of the equivalent

gradient errors (Bx
1 and By

1 ) at RHIC IRs can be done with the action and

phase method. The accuracy of this technique can also be evaluated with the

help of the action and phase method by inserting known values of gradient

errors. Those gradient errors were inserted by varying the strength of the

quadrupole bo7-qd1 by known quantities.

For each strength variation of bo7-qd1, a set of orbits are taken by vary-

ing the strengths of a horizontal dipole corrector and the same procedure is

repeated for a vertical dipole corrector. The equivalent magnetic kick ∆x′ and
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Figure 8.1: Calibration curve for the right skew quadrupole corrector (bi8-qs3
or SQ08C2B) at IR8.
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Figure 8.2: The strength of bo7-qd1 is varied in the RHIC ramp editor manager
while the equivalent gradient error Bx

1 is measured.

∆y′ at the relevant IR for each orbit are then evaluated by using Eq. 5.16

leading to graphs like the one shown in Fig. 5.2. The equivalent gradient er-

rors can be evaluated from the mentioned figures using Eq. 5.25. Fig. 8.2 and

Fig. 8.3 show the results of the previous analysis.

Since the ∆x′, ∆y′, y and x are measured at exactly the location where the

bo7-qd1 is located, the equivalent gradient error of a RHIC triplet expressed
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Figure 8.3: Same as Fig. 8.2 but now measuring By
1 . The precision of this ex-

periment is better when compared to the previous case revealing the existence
of a systematic error of about 0.1 in the slope of the curve.
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in function of the individual gradient errors at each quadrupole of the triplet

is reduced to:

Bze
1 = Ba

1 +
βzbB

b
1 + βzcB

c
1

βza

, (8.1)

where Eq. 8.1 follows from Eq. B.16 when βze (with ze representing either xe

or ye) is made equal to βza. The relation between the measured value Bze
1

and the value used in bo7-qd1 is then expected to be 1:1 according to Eq. 8.1.

Fig. 8.2 and Fig. 8.3 are not only linear relations but also reproduce the correct

slope with a precision that can be as low as 4% and a accuracy below 10%. It is

important to emphasizes that these numbers are related to the gradient error

not to the total strength of the particular quadrupole under study. The total

strength can be found by adding the gradient error to the design strength

or to the strength of the respective quadrupole used in the model in which

the measurements will be based. The error in the determination of the total

strength of the quadrupole can be as small as 0.06% according to these results.

8.3 Sextupole Corrector Calibration Experi-

ment

During the RHIC 2003 deuteron-gold run additional calibration experi-

ments with sextupoles were performed. The experiment is basically to set a

sextupole corrector to some known strength and then take a series of orbits

with different strengths of a particular dipole corrector. The experiment is

then repeated for other 3 different sextupole corrector strengths.
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Graphs of ∆x′ and/or ∆y′ vs x can be obtained for each different sextupole

strength used (see Fig. 8.4) and a fit of the curves to Eq. B.33 can be used to

evaluate the sextupole coefficients.

The normal sextupole coefficients (Bxa
2 and By

2 ) obtained from the fits

to the different set of measurements are function of the sextupole strength

applied to the sextupole corrector used in the experiment (bo7-sx3). If the

magnetic kicks and the beam positions in the previous graphs are measured

at the location of the sextupole corrector, the functions that relate Bxa
2 and

By
2 with the sextupole corrector strength Bcorr

2 are:

Bxa
2 = Bcorr

2 +Btripx
2

(8.2)

By
2 = Bcorr

2 +Btripy
2

(8.3)

where Btripx
2 and Btripy

2 are the normal sextupole coefficients produced by the

combination of sextupole errors in all 3 quadrupoles of the triplet. Therefore,

measuring Bxa
2 or By

2 is like measuring Bcorr
2 plus and offset given by the

original sextupole errors present at the quadrupoles of the triplet.

The calibration curve (measured value vs set values) obtained from the

different series of measurements can be seen in Fig. 8.5. The uncertainties

associated with each measurement are propagated errors derived from the

estimated errors of the graphs of magnetic kick versus position from which the

calibration curve was obtained. The calibration curve follows the expected
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trend but the propagated errors seem to be very small considering how much

the points are scattered around the calibration curve. There are evidence

that errors associated with the magnetic kicks from which the sextupole were

extracted were underestimated. Indeed the quadratic fits done to the curves of

magnetic kick versus the beam position (see Fig. 8.4) give values for χ2 equal

to 2.3, an indication of too small uncertainties. The uncertainties associated

with RHIC 2001 proton experiments magnetic kicks were 4 times smaller than

the ones found in the RHIC 2003 dAu experiments. This might be due to some

temporary condition of the machine but also might be related with the particle

used. If this is the case, then it will be convenient to repeat this experiment

with protons. Another factor that will reduce the errors is increasing the

number of points used to determine each sextupole strength. Due to the

time limitations only 4 points per sextupole strength were used in the RHIC

2003 dAu experiment. Increasing the amplitude of the betatron oscillation will

definitively help to resolve the strength with better precision but the feasibility

of increasing the amplitude beyond the maximum amplitude used of about 10

mm must be carefully examined.
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Figure 8.4: Measurements of magnetic kick vs beam position at the location of
the sextupole corrector used in the sextupole calibration experiment. Evalua-
tion of χ2 for different sextupole strengths and polynomial fits makes evident
the effect of the sextupoles in the orbit measurements.
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Chapter 9

Software for Analysis of First
Turn Orbits and Closed Orbits

Most of the orbit analysis presented in this thesis requires extensive com-

putations that can be efficiently performed by well designed programs. This

chapter shows a complete description of the software that was developed in

order to simplify the analysis of the experiments. The software has been de-

sign such that it might be possible in the future to do on-line measurements.

All the software presented in this section is saved in the BNL public directory

/rap/lattice tools/ActionPhase/ unless otherwise indicated.

9.1 Preprocessing the Orbit Data

Orbit data in RHIC is stored in files *.sdds, which are convenient to have

in ASCII format in order to easily process the orbit. The conversion to ASCII

is done with a special application called SDDSCONVERT available in the

SUN machines in the directory /usr/local/bin/.
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Difference orbits are the most common type of orbit used in this thesis.

The RHIC Orbit Display Program has a very useful menu function that allow

to do difference between two orbits in a windows environment. This function

is enough when few orbits are being analyzed at the same time, but when it is

neccesary to do analysis with a large number of orbits this process can become

very slow. Line commands or scripts are preferred in those cases and several

of them has been written in C++ code and PERL.

BSUBSTRACT.C is a C++ program that take 2 multi-turn orbits in

ASCII format, jump to the fifth orbit, which is the actual first injection turn,

and performed the difference between the two orbit measurements of each

BPM. The results are saved in the same ASCII format as the original or-

bits are saved. Besides the first injection turn, the measurements of arc 6-8

corresponding to the second turn are also processed which are necessary to

evaluate errors at IR6. There is also a version in which arc 6-8 orbit data is

not processed (SUBS IMPR) and different to BSUBSTRACT.C is a PERL

script.

Closed orbits, different to multi-turn orbit, are stored in one turn files

that requires a slight different program (BSUBS.CLOSE) to do the difference

orbit.

It was not always possible to do the difference orbits with the programs

described. There is a peculiar behavior with some of the orbits that I will

described in the next paragraphs.

A typical line of an orbit file is:
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sx x c c f sy y c c f

where sx is the position of a horizontal BPM, x is the corresponding BPM

reading, sy is the position of a vertical BPM, y is the corresponding BPM

reading and c and f are control characters

The programs described earlier rely in the fact the that two orbit files

used to do the difference orbit are aligned when comparing column sx and sy.

This means that if a file has in one of its lines sx = 3000 and sy = 3100 the

other file should have the same values in the same line. This is a fact that

even the Rhic orbit display program uses to do the difference orbits.

Sometimes orbits that don’t satisfy the above criteria are found and the

programs to do the difference orbits fail.

The program SUBS TRICKY (only closed orbits) was created to solve the

mentioned problem. In this program, both orbits are read completely before

processing them. Relevant values are stored in matrices that later are read to

do the corresponding operations and write the final difference orbit file.

Besides the orbit data, the software developed needs a Twiss file with the

designed lattice functions. This lattice file has a format very similar to the

input lattice file of the Rhic Orbit Display Program. A simple C++ program

called CONVERTTWISS is used to convert the input lattice file of the Rhic

Orbit Display Program into the input lattice file of the software presented here.

In order to run this program, it is neccesary to give the name of the lattice

input file of the Rhic Orbit and the name of the output file. For example, the

line command “converttwiss twiss feb2000.asc btwiss.asc”, takes the RHIC
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twiss file “twiss feb2000.asc” eliminates the intermediate labels in this file and

store the result in btwiss.asc.

9.2 The Main Program

There are two different main programs with names MODULAR.C or

MODULAR IR.C. MODULAR.C has been written to extract error values from

the whole IR while MODULAR IR.C has been written to extract error values

from individual triplets. Both programs MODULAR.C and MODULAR IR.C

have 3 principal parts:

• Determination of average actions and phases in each arc of the acceler-

ator and beam positions at the IR skew quadrupole corrector.

• Calculation of ∆x′ according to Eq. 3.4 and coefficients a1 and b1 ac-

cording to Eq. 5.17.

• Screen printout of the above quantities for all the IRs.

The main core of the first item are the subroutines PRINCIPALX, PRIN-

CIPALY, STRENGTHS YELL and STRENGTHS BLUE. These subroutines

also contain smaller subroutines. All the subroutines will be described in Sec-

tion 9.3.

The second item is the straight application of Eq. 3.4 and Eq. 5.17 to find

∆x′ and the a1 and b1 coefficients. All the values required for these Equations

are produced in the first item.
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The third item is a for-loop that allows to print any of the variables

evaluated in the first or the second item for all triplets in the ring if the program

MODULAR IR.C is used or for all IRs if the program MODULAR.C is used.

The for-loop also print two files “delta ir h.dat” and “delta ir v.dat”. Each

file contain 2 columns for each triplet for a total of 24 for all 12 triplets. The 2

columns contain either the values ∆x′ and xsk, the position of the beam at the

corresponding skew quadrupole corrector or the values ∆y ′ and ysk depending

on whether the file is “delta ir h.dat” or “delta ir v.dat”. These files are not

created every time the program MODULAR.C or MODULAR IR.C is run.

Instead, every time the program is run a new line is added to this file. This

allow to analyze the output of many orbits together.

9.3 Subroutines

9.3.1 Subroutine GETBETA

This subroutine read the twiss file produced by CONVERTTWISS to find

the value of the beta functions and phase advance for a given value of the axial

coordinate s. This subroutine has one input, the axial coordinate s, and four

outputs, the beta functions and phase advances in both planes. The program

gives values for the lattice function for any real value of s even though the

original twiss file only has the value of the lattice functions for a finite number

of s positions. In order to do that, the subroutine identifies two consecutive

lines with s values that are below and above the given s value. The values of
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the lattice functions of those lines are then used to do linear interpolations.

9.3.2 Subroutine GETPOSX and GETPOSY

These subroutines are used to read either the horizontal (GETPOX) or the

vertical (GETPOSY) beam position from an sdds orbit file in ASCII format.

The subroutines read one orbit line whenever they are invoked and advance

one line forward. The outputs are the value of the coordinate s and its corre-

sponding BPM measurement. The subroutines are also sensitive to the flag f

(see Section 9.1) which indicates if the BPM measurement of the orbit line is

valid or no. GETPOSX and GETPOSY generate outputs only for valid lines.

If they encounter a non valid line, they go forward one orbit line and evaluate

the flag f again. This process continues until a valid BPM measurement is

found.

9.3.3 Subroutine INITIATEPOS

Orbit files usually contained long headers before the BPM data. In order

to use the subroutines GETPOSX and GETPOSY it is neccesary to place the

pointer of the file where the orbit data starts. This is precisely the function of

the INITIATEPOS subroutine. INITIATEPOS reads the sdds file in ASCII

format and advance where the first line of orbit data is. From this point

the subroutines GETPOSX and GETPOSY can be used as many times as

neccesary until the orbit file is completely read.
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9.3.4 Subroutine PRINCIPALX and PRINCIPALY

These subroutines are the central core of the program to find error from

the RHIC orbits. A schematic diagram of the subroutines PRINCIPALX is

shown in Fig. 9.1. The subroutine PRINCIPALX starts by setting two indices:

arc which indicate the accelerator arc that is been processed and n ,the number

of BPMs in the mentioned arc. In the next step, the orbit file is read with

the subroutine GETPOSX. This subroutine recover the current value of s, the

axial coordinate along the ring, and its corresponding horizontal BPM reading.

The subroutine GETPOSX is used twice in order to obtain the 2 adjacents

BPM readings required by Eq. 2.2 to find the corresponding action and phase

at a specific location in the ring. It is also neccesary to read the corresponding

values of the lattice functions for the 2 adjacent positions. The subroutine

GETBETAS is used twice to obtain the required beta functions. All the

variables found in the previous steps like action, phase , lattice functions are

saved in vectors with a length equal to the number of BPMs in the arc under

analysis. This process is repeated until the end of the arc is reached. At the

end of the arc the variable arc is incremented and the average values of action

and phase in the arc are calculated according to values stored in the vector

mentioned previously. Other quantities that are calculated at the end of the

arc are the horizontal and vertical position of the beam at the position of the

skew quadrupole correctors in the triplets by any of the 3 methods explained

in Section 3.3. Also the vector xarc[n] can be fitted to the model using one
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s2 > kick_pos && flag = 0

Do Fit
(3 Methods)

save fitted orbit (arc)
n = 0

avg J[Arc], avg Ang[Arc]

Xir[Arc], PosIR

Store

Do Fit
(3 Methods)

save fitted orbit (arc)
n = 0

End of Arc ?

n = n +1

Read x1, x2, s

xarc[n] = x1 

sarc[n] = s1
        :

Read Betas 
 and Phase Adv

Calculate 
J[n] and Ang[n]

If s1 > sir[Arc]
Arc = NextArc

Start

n = 1
Arc = 7

End of File ?

End

Figure 9.1: schematic diagram of the PRINCIPALX subroutine. PRINCI-
PALX and PRINCIPALY are the same except for the evaluation of the beta
functions in each case.
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Figure 9.2: Convention used by the main program to label the arcs and the 2
sides of each RHIC IR. Every step represents and arc which is labeled with an
odd number. It is also illustrated how each side of the IRs is labeled. Average
action and phase in each arc as well as associated quantities are labeled with
the number that corresponds to their arc. The same is valid for the quantities
associated with the triplet like skew quadrupole corrector strengths and beam
position measurements at the skew quadrupole corrector.

of the 3 different methods explained in Appendix C. The results of the fit

are saved to a file that later can be retrieved to do comparisons with the real

orbit. Finally the variable n is returned to zero to prepare for analysis in the

next arc.

In principle, the subroutine should produce 6 different values of average

actions and phases, one for each arc. However, since the dipole kick used to

either create the betatron oscillation in the case of the first turn trajectories

or to shift the orbit in the case of the closed orbits, is present in the final

difference orbit (see Fig. 2.2), the arc where the dipole corrector is must be
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divided in two parts. This division is performed within the last while-loop of

Fig. 9.1 which basically selects the appropriate range of BPMs to be included

in the calculation of average action and phase for the arc where the dipole

corrector is located.

All the instructions described until now are repeated for any pair of adja-

cents BPMS until the end of the orbit file is reached. The most recent version

of the subroutine has five inputs; plane of the kick to indicate if the dipole

corrector was set in the horizontal or the vertical plane, position of the dipole

corrector, name of the orbit file, position of all 12 skew quadrupole correctors

and ring that is being analyzed either Blue or Yellow. The outputs are the av-

erages actions and phases in six regions if the dipole corrector is in the opposite

plane where the orbit is analyzed or seven regions if the dipole corrector is in

the same plane in which the orbits are analyzed. Since the latest experiments

will involve setting dipole correctors in both planes this subroutine is expected

to be modified to always divide the ring in seven regions as discussed earlier.

The other outputs are the beam position at the skew quadrupole correctors as

well as the beta functions and phase advances. There is also an output called

posirx old that gives the value of the beam position at the skew quadrupole

correctors but it is obtained in a different way than posirx. posirx old is ob-

tained using Eq. 3.9 while posirx old is obtained by extrapolating the fit done

in the previous arc with the subroutine BP CORRECTOR (see Appendix C).
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9.4 Auxiliar Software

Several of the analysis performed in this thesis required additional soft-

ware besides the MODULAR programs. The analysis performed in Section 5.5

and Chapter 7 , for example, require additional software to extract the values

of the magnetic kick (either ∆x′ or ∆y′) as function of the beam position at a

particular skew quadrupole corrector (either xsc or ysc) from the delta ir h.dat

and delta ir v.dat files. I have written a PERL program, EXTRACT LIST and

EXTRACT LIST IR, that takes the delta ir h.dat files and extract from them

the column of delta values and beam positions for a given plane and triplet

or IR and copy such values in another file with the name “ir deltas.dat”. For

example, the command line “extract list horizontal 8” read the columns ∆x ,

xsc and ysc corresponding to the interaction region 8 and save such columns

in the “ir deltas.dat”.

The procedure described in the previous paragraph usually involves a te-

dious process of typing at the LINUX prompt. In order to avoid this step, it

is convenient to write a script that take all the orbits of the experiment and

performed all the necessary steps to produce the “ir deltas.dat” file. I have

written PERL scripts that take all the orbits for a particular experiment, pro-

cess all the orbits with either MODULAR.C or MODULAR IR.C and create

the 3 columns file “ir deltas.dat” for as many IR or triplets as desired. One

example of such a script is “trip bo3-th12.pl”. This Perl script creates a shell

script “trip bo3-th12” that can be executed from a linux prompt.
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Chapter 10

Concluding Remarks

The development and application of a technique (action and phase analy-

sis) to measure local errors at RHIC Interaction Regions, linear and nonlinear,

has been presented in this first part of the dissertation.

Skew quadrupole errors at all RHIC Interaction Regions were found from

the action and phase analysis on first turn difference orbits. These measure-

ments were used successfully to locally correct for linear coupling in the ma-

chine.

The action and phase analysis were then generalized to closed orbits,

where it was possible not only to extract skew quadrupole errors but also

integrated gradient errors in some of the RHIC triplets with a precision that

oscillate around 7 %. The error in the total gradient strength determination

(no the error) can be as low as 0.01 %.

The skew quadrupole errors have their origin on roll quadrupoles. If the

rolls associated with the quadrupoles (in this case quadrupoles of a RHIC

triplet) are know then it is possible to estimate equivalent skew quadrupole
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errors associated with the triplet and comparisons can be done with the mea-

sured values. Roll angles of some of the RHIC triplets were measured during

the 2002 RHIC shutdown period with this purpose in mind. There is a good

agreement (within 15 %) between the calculated values with the measured

angles and the measured skew quadrupole errors obtain from the action and

phase analysis for most of the RHIC triplets considered.

The action and phase analysis was also extended to measure nonlinear

errors specially sextupoles. The first results of these analysis on difference

closed orbits give the correct order of magnitude for the expected sextupole

components. We found that the order of magnitude of the statistical errors

associated with the sextupole measurements is in some cases as big as the

measurement itself but this can be improved by reasonable variations of the

experiment.

Another set of interesting experiments were done by introducing know

values of skew quadrupole errors, gradient errors and sextupole errors in the

machine while trying to obtain their values with action and phase analysis.

The correspondence between the measured values and the set values is around

5 % for some of the experiments. Sextupole errors showed a clear relation

between measured and set values. however, further analysis or experimentation

is needed in this case to reduce the uncertainties associated with the sextupole

measurements.

The fact that the action and phase analysis is specially useful at the

interaction regions and allow to make very precise measurements at these
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locations is because the beta functions at the interaction regions are higher

than anywhere else in the ring. In order to apply the action and phase analysis

in the arcs and obtain the same precision as before in the error measurements

one could intentionally raise the beta functions locally at the point of interest

using for example beta bumps [57]. This is an interesting possibility to explore

in the future that will expand the application of the action and phase analysis.

At the time this text is been written (May 2003), action and phase anal-

ysis with SPS (Super Proton Synchrotron at CERN) orbits are underway to

determine the strength of known sextupole components are arbitrary locations

of the ring [58]. Encouraging results have already found even before doing beta

bumps. The action and phase analysis would combine in the future the ad-

vantages of methods like the response matrix to find errors all around the ring

and the orbit bump method to find errors at localized places in the ring. The

response matrix method calculates simultaneously all possible errors from a

set of orbits obtained in one experiment while the orbit bump requires and

experiment for every individual error. The action and phase analysis on the

other hand, has the potential to determine from a set of orbits taken during

one experiment, errors anywhere in the ring. The difference with the response

matrix method in this case is that the errors are determined individually and

they don’t depend on each other. The amount of data proccessing in this

case would be bigger than for the case of the response matrix method but this

apparent drawback can be solved by well designed software.
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Part II: Optical Design of the Rapid
Cycling Medical Synchrotron



Chapter 11

Proton Therapy

11.1 Introduction

Techniques like radiotherapy, chemotherapy, surgery and hadron therapy

are used to treat a wide range of cancer manifestations. The most common

techniques employed are radiotherapy and surgery or a combination of both.

These techniques allow local tumor control which seems to be positively re-

lated with the chances of survival. Radiotherapy, however, has undesirable

secondary effects that are difficult to minimize.

Hadron therapy unlike radiotherapy allows to irradiate cells very precisely,

minimizing the irradiation of healthy tissue and hence the secondary effects

that are common in radiotherapy. For this reason the use of hadron therapy,

proton therapy in particular, is increasing specially in the last decade. During

this interval of time, two dedicated proton facilities in the US and five in Japan

have been commissioned and there are plans for many more in the future.
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11.2 Physics of Proton Therapy

When protons proceed through the tissue they cause ionization at the

expense of their energy until they are finally stopped. R. Wilson was the first

one to characterize this interaction in 1946 [34]. The dose depth distribution

shown in Fig. 11.1 is mainly determined by his first observations: “The dosage

is proportional to the ionization per centimeter of path, or specific ionization,

and this varies almost inversely with the energy of the proton. Thus the

specifics ionization or dose is many times less where the proton enters the tissue

at high energy than it is in the last centimeter of the path where the ionization

is brought to a rest”. The above properties make possible to irradiate within

very precise boundaries a tumor located at certain depth under the skin.

The depth at which the protons are stopped or the range is a function

of the incident energy of the protons as can be seen in Fig. 11.2. To reach

most of the human organs the energy of the protons must vary between 70

MeV and 250 MeV. If it is necessary that the protons pass through the body

before being stopped as it is required for some imaging techniques, the energy

required must be bigger than 270 MeV.

Fig. 11.3 shows the dose depth distributions of electrons and X -Rays over

imposed to the dose depth distribution of protons. The differences in these

curves are mainly due to the different nature of the interactions of the different

radiation with the tissue. While protons directly produce ionization, photons

produces indirect ionization through process like photo-effect and pair produc-
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Figure 11.1: Dose deposition profile of a 190 Mev proton beam in Tissue. The
dose deposition near the skin is low compared to the deposition about 20 cm
deeper.
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Figure 11.2: Range of protons in water as function of the incident proton
kinetic energy. The behavior of the curve is almost linear in the range of
interest.
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Figure 11.3: Dose deposition for three different types of radiation: Electrons,
X-Rays and protons. The proton dose deposition is much narrower than the
other 2 types.
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tion. There is no energy lost of individual photons and hence the ionization

cause by any photon at any depth has the same probability to occur. This

leads to a exponentially decrease of the photon beam which means that most

of the radiation will be absorbed by the tissue at the beginning of the photon

path which is in agreement with the corresponding curve in Fig. 11.3. It is

also worth it to mention that there is no abrupt stop of all the photons as in

the protons case but they continuously decrease their intensity until they pass

entirely the tissue.

From the above observations it is easy to see that radiotherapy with pho-

tons is more likely to act in healthy tissue than proton therapy. The broad

peak of photon dose can be reduced by irradiating the tumor from different

directions but even though proton dose distribution has a peak many times

narrower than photon radiation.

Electrons also cause direct ionization as the protons do, but its range

is more reduced due to the fact that electrons are many times lighter than

protons and hence they are easily scattered. Electron radiation is useful only

for superficial tumors or those just under the skin surface.

11.3 Dosimetry of Proton Therapy

In order to characterize the incoming radiation according to the energy

that such radiation exchange with the tissue, the concept of Linear Energy

Transfer (LET) was created. Photons can have LET around 0.3 Kev per
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micrometer while LET for protons is in the range of 10 Kev to 20 Kev per

micrometer.

Photons, protons, electrons and alpha particles are considered to have low

LET. Neutrons and all other heavy ion are considered to have high LET. The

reason for this division is related with the damage that the radiation causes

in the tissue.

Radiation with low LET leave a pathway of spare ionization that causes

minor damages to the cells (usually single break strands in the DNA structure)

that the cells can repair itself. Particles with high LET in contrast, leave

pathways with very dense ionization that can cause irreparable damage in the

cells like double break of DNA strands.

Cancer cells usually lose their ability to repair themselves and a single

break of their DNA seems to be enough to kill them. For this reason low LET

radiation is preferred; it is enough to kill the cancer cells in one hand and on

the other hand the effect in healthy tissue is repairable.

At the beginning of this chapter it was stated that hadron therapy has

advantages over the conventional radiation therapy due to the fact that the

dose distribution is more localized in the first one. Among the hadrons, the

protons are the only ones with low LET. That make the protons very attractive

for medical treatment and the particle of choice for the Rapid Cycling Medical

Synchrotron.

156



Chapter 12

General Design Considerations
for the Rapid Cycling Medical
Synchrotron (RCMS)

We will first present some of the requirements for a therapy accelerator

because that will motivate the subsequent design choices. This discussion is an

update of the original proposal of the RCMS done in FERMILAB in 1992 [35].

At that time, the facility was named Proton Therapy Accelerator (PTA). The

project was then re-taken by BNL under the name of Rapid Cycling Medical

Synchrotron or RCMS.

12.1 General Requirements of a Therapy Fa-

cility

Besides the obvious requirement to deliver beam of the appropriate char-

acteristics, preeminent design goals of a medical accelerator include reliability,

economy, ease of maintenance, and patient safety. Contrast the design of high
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energy physics (HEP) research accelerators, where ultimate performance is

commonly desired along with low capital cost. Beam users at a HEP labora-

tory are prepared to tolerate relatively frequent data taking interruptions, not

only because that is the price of high energy performance but also because

many technically skilled people are ready to effect repairs quickly. The man-

ager of a medical radiation facility can not be so tolerant -only very infrequent

rescheduling of patient treatment is acceptable and considerably fewer main-

tenance people are on site. Furthermore, although personnel safety is heavily

emphasized at HEP facilities , additional safety measures are neccesary in the

facility where patients are deliberately exposed to the beam.

The design of RCMS therefore emphasizes simplicity and modularity, for

example by minimizing the number of different component types so that many

parts are interchangeable. The RCMS design is also conservative in that the

technologies adopted are well-establish by successfully use at existing acceler-

ator. Furthermore, the design specifications are far from performance limits;

the conservative methods used to estimate the performance limits have been

validated by experience with other accelerators.

12.2 Design Choices

We believe that a synchrotron is the machine of choice for proton therapy.

The most significant advantage over a linac or a cyclotron is that an appro-

priately designed synchrotron can straightforwardly produce a beam whose
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output energy is continuously variable within wide limits, a capability nec-

essary for the beam delivery concepts to be described below. Linacs and

cyclotrons can produce more intense beams, but well-designed synchrotrons

can easily provide enough beam intensity for a therapy facility. The cost of a

synchrotron is probably less than that of a linac and comparable to that of a

cyclotron [36].

The proton synchrotron incorporates three features that are most impor-

tant to achieving the design goals of the RCMS:

1. The Optical Lattice Design is based on the Strong Focusing Principle

The magnet distribution or lattice includes regularly spaced quadrupoles

that alternately focus and defocus the beam. This is the simplest real-

ization of the alternating gradient concept, which results in strong net

focusing in both transverse directions.

The optical design of the RCMS was made out FODO cells (see Chap-

ter 14). These FODO cells might have dipole magnets between the

quadrupoles (arc FODO cells) or they might be magnetically empty

(straight section FODO cells). FODO optics are extremely simple and

well behaved, with tight focusing that reduces the horizontal and verti-

cal beam sizes, thereby reducing the cost of the magnets because their

transverse sizes can be small.

2. The synchrotron is rapid-cycling and uses single turn extraction: Beam

can be extracted from a synchrotron using single-turn fast extraction
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or resonant slow spill; fast extraction is preferable for several reasons.

The minimal hardware and controls necessary to achieve single turn ex-

traction lead to a simpler and more rugged system than that necessary

to achieve slow extraction over thousand turns. Furthermore, the beam

can be fast-extracted at arbitrary energy simply by changing the firing

time of the extraction kicker; (of course the strengths of the extraction

kicker, septum, and beam transport elements must be changed to track

the beam momentum). Slow extraction inherently generates beam losses

of order 1% or more, whereas fast extraction is inherently “clean”. Un-

like slow spill, fast extraction imposes no special requirements on the

good-field aperture at extraction time. Painting the beam over a tumor

volume during slow spill requires uniform spill; it is hard in practice to

avoid fluctuations of the order of ten per cent in the spill rate of slowly

extracted beam.

Fast extraction allows the choice of a rapid cycling synchrotron; slow

spill takes so long that it effectively precludes rapid-cycling. A slow

cycle essentially demands that a lot of protons occupy the accelerator

simultaneously in order to achieve acceptable treatment times; slow ex-

traction thus carries the threat of suddenly dumping a lot of beam into

a localized region of a patient. A fast repetition rate allows the inten-

sity requirements to be met with modest intensity per cycle, thereby

eliminating intensity-dependent problems such as coherent instabilities
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and space-charge effects. It also allows scanning of large tumor volumes

by delivering one beam bunch to each volume element or voxel, creating

the desired dose distribution throughout the tumor while minimizing the

dose delivered to normal tissue. This beam delivery method, which we

call “pointillism”, seems to be the most promising approach to realizing

the full potential of proton therapy. Eros Pedroni and coworkers at PSI

have developed a similar approach to beam delivery [37]. The high level

of repeatability that comes with rapid cycling provides a natural way

to ensure delivery of the intended number of protons on each cycle: if

the accelerated beam falls outside tight intensity specifications, then it

is trivial to reject that cycle and wait for the next, in order to continue

a scan of the patient. In this sense the RCMS is a “digital” treatment

accelerator. Finally, rapid cycling significantly reduces power costs, as

shall be discussed below.

It is worth noting in passing that the 500 MeV rapid cycling proton

booster at the KEK high energy laboratory in Japan bears some simi-

larities to the RCMS. For several years now it has used parasitic beam

to treat a modest number of patients [38]

3. Beam is injected at a kinetic energy of 7 Mev: The use of a relatively

high injection energy bestows several advantages. It makes the pro-

tons more dynamically “rigid”, significantly ameliorating the effect of

the electrostatic “space charge” forces attempting to disrupt the bunch.
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In conjunction with the relatively small beam intensity per cycle, this

means that the space charge effects are negligible. Also, since the beam

shrinks adiabatically as it accelerates, a higher injection energy makes

for a smaller beam, reducing the required synchrotron aperture. Higher

injection momentum means stronger magnetic fields at injection time,

reducing the effects of remanent fields. Finally a 7 MeV linac can be

used for parasitic radio-isotope production.

The kinetic energy of the beam extracted from the synchrotron will be

between 70 MeV and 250 MeV. A maximum energy of about 215-220 MeV is

expected at the patient, if the beam is double scattered in the nozzle.

The facility will not be capable of proton radiography (unless the maxi-

mum energy is raised to about 270 MeV). An energy of 220 MeV has a depth

of penetration in tissue of approximately 30 cm, an adequate depth for the

treatment of most tumors.

The beam intensity will be about 3× 1012 protons per minute. Although

this is small compared to the intensities achieved by some synchrotrons for

high energy physics, still is not trivial to achieve in a small synchrotron with

a low injection energy. The intensity requirement is “soft ” in the sense that

the highest intensities are needed only occasionally, mainly to treat large tu-

mors in reasonable times (generally in exposure times of order a minute per

visit), and the needs are sometimes inflated by allowing for various inefficien-

cies, especially the losses which inevitably accompany passive beam-spreading
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techniques. Nevertheless, the RCMS has been design to achieve a higher in-

tensity, at least 3×1012 protons per minute. The most important consequence

of the high design intensity may be that no intensity dependence of the accel-

erator performance or beam sizes will be encountered in everyday operation

as the intensity is adjusted over a range of values well below the ultimate

performance limit. Higher intensities may also prove valuable for marginally

shortening treatment times and/or for supplying beam to additional treatment

rooms in the future; it would be folly to allow the intensity limitations of the

accelerator to limit the size of the tumor that can be treated or the scope of

the facility. In Table 12.1, we have added the emittance and the circumference

of the synchrotron to the basic parameters of the RCMS already mentioned in

this section.

Maximum Extraction Energy [MeV] 250
Minimum Extraction Energy [MeV] 70

Injection Kinetic Energy [MeV] 7
Repetition Rate frep [Hz] 30

Treatment protons per bunch N, min 1.0 ×107

Treatment protons per bunch N, max 1.7 ×109

Proton Flux R, max [1/min] 3.0 ×1012

Circumference C [m] 28.6
Normalized RMS emittance ε [µ m] 0.15

Table 12.1: Primary parameters of the Rapid Cycling Medical Synchrotron
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Chapter 13

IBEFUMFO: The Optics Design
Strategy

A typical problem in optics design is to match beam lines that have differ-

ent lattice functions at the point where the two beam lines want to be joined.

If such a difference is not corrected, the joined beam lines will readjust their

lattice functions such that there will be an increase of the maximum beta

function.

In some cases the growth of the beta functions is imperceptible and the

overall performance of the whole beam line is not perturbed and hence correc-

tion is not needed.

When the growth of the beta functions is not tolerable, correction can be

done, for example, by inserting quadrupoles between the 2 beam lines. The

strengths of the quadrupoles and the distances between them are varied until

the lattice functions are matched.

Fig. 13.1 is a simple example of the application of this method. In this
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case, the beam lines to be matched are both made out of FODO cells with

quadrupoles that have the same focal length but with different spacing between

the quadrupoles.

The most common situation found in optical design is to have arbitrary

incoming lattice functions that need to be matched to a FODO cell structure.

In some cases the physical parameters (lengths and focusing strengths) of such

FODO cells are known beforehand and hence the matching can be done by

standard algorithms included in simulation software like MAD [10]. In other

cases the physical parameters of the FODO cell are not known before the

matching and the only restriction on the final FODO cell is the beam size or

the maximum beta functions allowed. In this case it is convenient to develop

relations that allow the physical parameters of the FODO cell to be found as

function of such maximum beta functions. The matching process described in

Fig. 13.1 using the mentioned relations is what we have named IBEFUMFO

(Incoming BEta FUnction Matching to FOdo cells).

13.1 The Basic Formulas of IBEFUMFO

In the following lines I will deduced the relations between the physical

parameters of the FODO cell and its maximum beta functions. It will be

also neccesary to establish relations between the alpha functions of the FODO

cell at the matching point and their corresponding beta functions. Assume a

symmetric FODO cell like the one shown in Fig. 13.2. If the drifts have length
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QDQF/2 QF/2

Figure 13.2: Symmetric FODO cell scheme made of a half defocusing
quadrupole with focal length f/2, drift of Length L, focusing quadrupole of
focal length L, and half defocusing quadrupole of focal length f/2.

L and thin quadrupoles with focal length f then the transfer matrix , M, of

the FODO cell can be written as (see for example [39] pg. 48):

M =





1 − L2

2f2 L(2 + L
f
)

L(−2f+L)
4f3 1 − L2

2f2



 (13.1)

Since the general form of matrix M in function of the Courant - Snyder pa-

rameters is given by:

M =

(

cos Φ + α sin Φ β sin Φ
−γ sin Φ cos Φ − α sin Φ

)

, (13.2)

then,

1

2
Trace(M) = cos Φ = 1 − L2

2f 2
(13.3)

or,

sin(Φ/2) =
L

2f
(13.4)

Now comparing the second element in the first row of both matrices we get:

βF =
2L(1 + sin(Φ/2))

sin Φ
(13.5)
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To find the beta function in the center of the defocusing quadrupole the matrix

M is defined starting at the center of the defocusing quadrupole of the FODO

cell and the above procedure is repeated to obtain:

βD =
2L(1 − sin(Φ/2))

sin Φ
(13.6)

Since one of the approaches that we follow for optical design is to choose

the lattice functions (which are determined by the beam size) and then find

the physical parameters of the lattice, it is necessary to invert the previous

equations. Direct division of Eq. 13.5 and Eq. 13.6 lead to:

βF

βD

=
1 + sin(φ/2)

1 − sin(φ/2)
. (13.7)

Eq. 13.4 and Eq. 13.7 can be combined to obtain:

L

2f
=
βF − βD

βF + βD

. (13.8)

Addition of Eq. 13.5 and Eq. 13.6 lead to:

βF + βD =
4L

sin Φ
=

4f
√

1 − ( L
2f

)2
(13.9)

which trivially leads to:

f =
(
√

1 − ( L
2f

)2)(βD + βF )

4
. (13.10)

Eq. 13.8 and Eq. 13.10 can be combined to obtain:

f =
√

βFβD/2. (13.11)
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Multiplying Eq. 13.8 by twice Eq. 13.11, L as function of only beta functions

can be found,

L =
βF − βD

βF + βD

√

βFβD. (13.12)

Eq. 13.11 and Eq. 13.12 give the focal length and the length of the FODO

cell as function of the maximum beta functions of FODO cell as was required

initially.

Since all the physical parameters of the FODO cell are known at this

point, the problem of doing the matching between a beam line and the FODO

cell (see Fig. 13.1) can now be easily solved using programs like MAD. MAD,

in particular, contains special commands that allow two beam lines to be

matched through an optical insertion which in the case of Fig. 13.1 are the 2

quadrupoles separated by a drift.

Another possibility to solve the mentioned matching problem is to find a

relation between the alpha and the beta functions at the matching point of

the FODO cell. In this way, once the beta functions are given all the lattice

functions will be known at the matching point. The inserted quadrupoles can

then be varied to match the lattice functions at the entrance of the FODO

cell. The physical parameters of the FODO cell can be found by Eq. 13.11

and Eq. 13.12 as before or by periodically matching the FODO cell to the

known values of the lattice functions at the entrance of the FODO cell.

In order to find the relations between the beta and alpha functions it is

now convenient to relate βD and βF with the lattice functions at one particular
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Figure 13.3: The inter-space between quadrupoles of a FODO cell has a max-
imum for some value of the minimum beta function in the FODO cell
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position in the lattice. Since a defocusing quadrupole in the horizontal plane

is also a focusing quadrupole in the vertical plane the beta functions at the

center of the quadrupole (s0) should be given by:

βx(s0) = βD

(13.13)

βy(s0) = βF

At this position the alpha functions are zero since this place is a turning point

for the beta functions. Rather than having the lattice functions at the center

of the quadrupole it is neccesary to have them at one side of the quadrupole,

the real position where the matching will take place. These lattice functions

can be calculated with the evolution equations (Eq. 2.56 in [39]) for a thin

quadrupole,

β2 = β1

(13.14)

α2 = α1 + β1/f,

where subscript 1 labels lattice functions before the quadrupole and subscript

2 labels lattice functions after the quadrupole.

According to Eq. 13.14 the beta functions at either side of the quadrupole

are the same as in the center. The alpha functions, on the other hand, change

when going from position 1 to position 2. Since alpha at the center of the

quadrupole is zero it immediately follows that the alpha functions at either
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side of the quadrupole are:

α2 = ±β1

2f
(13.15)

where the sign depends on the kind of quadrupole considered (either focusing

or defocusing) and also the side of the quadrupole where the alpha function is

evaluated. For example, the alpha functions at the left hand side of defocusing

quadrupole can be found by substituting Eq. 13.11 in Eq. 13.15 leading to:

αy =

√

βy√
βx

(13.16)

αx = −
√
βx

√

βy

.

It is also possible to put some other conditions in the design besides the

beam size, like for example maximizing the length of the FODO cell from

Eq. 13.12. In such a case, once the maximum beta function is specified the

corresponding minimum beta function will be determined (see Fig. 13.3).

This approach in which Eq. 13.16 is used in combination with MAD nu-

merical matching were one the most important tools in the optimization of

the optical design of the RCMS.
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Chapter 14

Lattice Design of the RCMS

The design of all beam lines of the RCMS are based on the strong focusing

principle. The advantages of this design choice are small beam sizes modularity

and simplicity. Small beam sizes also imply smaller and lighter magnets which

in turn reduce costs.

Since dispersion contributes significantly to the beam size every effort

has to be made in order to suppress or reduce dispersion anywhere in the

ring. Dispersion in the straight sections of the RCMS ring has been made

equal to zero and minimized in the ring arcs. Special care has been taken in

compensating locally sources of dispersion in the delivery system.

The ring is made out of FODO cells, in the arcs as well as in the straight

sections with the last ones having longer lengths in order to accommodate the

injection system, the extraction system and the instrumentation.

The tunes of the machine were also taken into account during the design.

They have to be as far as possible from the stronger resonances.

In the following sections, a detail description of the optical design of the
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Figure 14.1: Perspective view of the racetrack layout of the synchrotron.

RCMS is given.

14.1 Ring Optics Design

The synchrotron ring has two arcs and two straight sections (see Fig. 14.1

and Fig. 14.2). The arcs are made out of FODO cell structures with a half

length equal to 1.1m which guarantees small beam sizes. These FODO cells are

arrays of alternate focusing and defocusing combined function magnets which

are dipoles with the poles slightly tilted to add a quadrupole component to

the magnets.

Since the maximum magnetic field allowed for the dipoles is B = 1.4T
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Figure 14.2: Plan view of the racetrack layout of the synchrotron.

and the rigidity of the beam at maximum energy is Bρ = 2.4Tm, the total

length of iron needed in each arc to bend the trajectory 180 degrees according

to Eq. 14.1 is about 5.46 m,

S = π
Bρ

B
. (14.1)

This iron length has to be distributed between the 1.1 m spaces defined

by the FODO cells. Table 14.1 shows 4 different possible configurations. The 5

magnet configuration barely leaves any space between adjacent magnets. The 6

magnet configuration leaves about 10 cm between adjacent magnets. However,

the 7 dipoles configuration (bending angle equal to 25.71o) was chosen instead

of the 6 dipoles configuration because the first one lead to a symmetric lattice.

This means that the lattice functions in the 2 arcs will be identical as well as the

lattice functions in the 2 straight sections. This feature will be very convenient

since it will significantly help to reduce the number of power supplies needed
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No. Magnet Magnet Length
[m]

5 1.091
6 0.910
7 0.780
8 0.682

Table 14.1: Relation between the magnets needed in the arc and their lengths
to always produce a total bend of 180 degrees with the same magnetic field

for the matching process that will be described later.

Dispersion is made equal to zero outside the arcs by adjusting the strength

of the focusing quadrupole component of the combined function magnets.

However, after the dispersion matching, the horizontal and vertical beta func-

tions significantly differ from each other leading to bigger beam sizes. The

defocusing strength and the edge angle of the combined function magnets are

then used to bring together the horizontal and the vertical beta functions

again. The resultant beta functions can be seen in Fig. 14.3

The straight sections should have inter-spaces between the quadrupoles

long enough to hold the instrumentation and the accessory components. In

particular, it is desirable to have a slot for the RF cavities and extraction

septum longer than the distance between the centers of two adjacent combined

functions magnets in the arcs. This unavoidably leads to an overall change

in the beta functions around the ring unless special matching conditions are

imposed in the border of the straight sections and the arcs.

The IBEFUMFO algorithm described in Chapter 13 can be used in this

case to optimally perform the required matching. As stated in Chapter 13,
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Figure 14.3: The arc is made out of 7 dipole which lead to a lattice with
reflexion symmetry about the center of the arc.

βx[m] 1.00
βy[m] 6.10
αx -0.40
αy 2.47
L[m] 1.68
F [m] 1.20

Table 14.2: Basic matching parameters in the straight section of the RCMS
ring.
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IBEFUMFO uses two quadrupoles to do the matching. The first two quadrupoles

of the straight section constitute the two required quadrupoles. The cen-

tral quadrupole of the straight section and the spaces at each side of this

quadrupole constitute the final FODO cell structure (see Fig. 14.4 and Fig. 13.1).

The IBEFUMFO algorithm requires two input values: the horizontal and

vertical beta functions , βx and βy, at the common point between the matching

quadrupoles and the FODO2 cell in the straight section. The corresponding

alpha functions, αx and αy, are calculated with Eq. 13.16. The length and the

focal length of the FODO2 cell are found by demanding the beta functions

to be equal at the entrance and exit of the FODO cell and equal to βy and

βx. Table 14.2 show all the basic parameters used in the matching process

described.

Since arcs and straight sections have mirror symmetry the matching done

on one side is identical to the match required on the other side. Also, the

straight sections are identical which means that the same power supplies can

be used for both straight sections. Only three different quadrupole power

supplies are required to do the matching in the whole ring.

Notice that the solution provided by the IBEFUMFO algorithm avoids

any increase of the beta functions in the arcs and leads to an acceptable

increase of the beta functions in the straight sections (see Fig. 14.5). It is

even possible to do the match such that the maximum beta function in the

arcs is the minimum possible for a given FODO cell of length L. In such a

case only the βy can be chosen. βx is determined by Eq. 13.12 as the value
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that makes the length L a maximum.

14.2 Injection

The nominal injection trajectory is shown in Fig. 14.10. Here we have

φ = 6.5◦, ψ = −M11XI/M12 (14.2)

where XI = a+ h = 18.3 mm and Mij are the elements of the transfer matrix

from the inflector exit to the injection kicker. We also have

D = ρ sin φ, d = ρ sinψ, (14.3)

where D + d = 1.3809 m. The radius of curvature is then

ρ =
D + d

(sinφ+ sinψ)
(14.4)

and

L = ρ tan (φ/2), H = L sin φ, (14.5)

l = ρ tan(ψ/2), h = l sinψ, a = XI − h. (14.6)

Fig. 14.6 shows a general view of the injection and extraction interfaces

from the tandem Van de Graaf injector (see [54]) , and into the switchyard

that serves the treatment rooms. Fig. 14.7 shows some perspective detail of

the injection interface with the incoming beam merging with the circulating

beam. While the incoming beam is always in the same horizontal plane as
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Figure 14.4: The application of IBEFUMFO easily allows to increase the
length of the FODO cells in the straight section while keeping small the beta
functions in the arcs. (the arcs can be identified by the wide rectangles that
represent dipoles)
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Figure 14.5: Lattice functions for the whole RCMS ring.
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Figure 14.6: Plan drawing of the synchrotron, showing a broad view of the
injection interface with the tandem Van de Graaf injector, and the extraction
interface with the first few switchyard elements.

the circulating beam, the horizontal angle and displacement between the two

must be reduced to zero. This is the function of the electrostatic inflector and

the injection kicker, shown schematically, and in plan detail, in Fig. 14.8 and

Fig. 14.9. Most of the work is done by the inflector, a simple device with a

constant electrostatic field. At the end of the inflector both beams are in the

same beampipe for the first time. The injection kicker – a pulsed magnet –

finishes the job.

The scale drawing of the electrostatic inflector in Fig. 14.11, and the sketch

of the apertures at the downstream end of the inflector in Fig. 14.12, show a
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Figure 14.7: Perspective views of the injection interface.
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Figure 14.8: Schematic view of the interface between the tandem Van de Graaf
injector and the synchrotron.
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Figure 14.9: Plan view of the interface between the tandem Van de Graaf
injector and the synchrotron.
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Figure 14.10: Nominal trajectory of beam passing through the injection in-
flector. (Note that beam enters from the left, in this sketch.)
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Electrostatic Inflector

Bend angle, φ 6.5◦

Radius of curvature, ρ [m] 11.5
Active length, D + d [m] 1.4

Septum thickness [mm] 1
Gap, gI [mm] 18

Voltage, V [kV] 22
Electric field [kV/cm] 12

Injection Kicker

Kick angle, ΦK [mrad] 5.3
Magnetic length [m] 0.2
Magnetic field, B [G] 100

Gap, gK [mm] 30
Current, NI [A] 240

Rise time [ms] < 16
Flat top [ns] > 100

Fall time [ns] < 600
(Revolution Period [ns] 840)

Table 14.3: Injection Kicker and Inflector Parameters
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gap of gI = 18 mm between the septum and the cathode in the inflector.

Thus the required electrostatic voltage is

V =
gI

ρ

(

c2p2

E

)

= 21.9 kV (14.7)

Blue and green ellipses in Fig. 14.13 represent ±2.5σ (rms) of the beam at

focusing and defocusing locations in the straights during injection, according

to the values recorded in Table 4 of reference [55]. The comfortable physical

aperture at injection becomes even more luxurious as the beam shrinks in

transverse size during acceleration.

The injected beam leaving the inflector is on a trajectory that crosses the

center line of the beam pipe at location K, in the middle of an injection kicker.

This kicker is turned on to deliver a vertical magnetic field when the incoming

beam passes for the first time, but is turned off on all subsequent beam pas-

sages. Thus it delivers a one-time horizontal kick to the beam, steering it to

travel down the center of the beam pipe. The angle of the horizontal kick is

ΦK =
XI√

βIβK sinµ
= 5.30 mr (14.8)

where XI = 18.3 mm is the incoming beam displacement at location I, the

downstream end of the inflector, µ is the betatron phase advance between I

and K, and βI and βK are the horizontal beta functions at the two points.

The integrated strength of the kicker is

Bl = ΦKBρ = 0.00203T −m. (14.9)
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The magnetic field required to do this in a 0.2 m long kicker is B = 101

Gauss, which is delivered by a current I such that

NI = gKB/µ0 = 242 A (14.10)

where N is the number of turns wound on the kicker, and gK = 30 mm is the

magnet gap.

14.3 Extraction

Fig. 14.14 shows a general perspective of both injection and extraction

interfaces, which are similar in many ways. The extraction kicker begins the

extraction process by quickly turning on a vertical magnetic field during a

selected turn number, thereby selecting the energy of the extracted beam.

The angle is sufficient to move the beam horizontally across a current sheet

at the upstream end of the extraction septum magnet, which also bends the

beam horizontally. The positions of the extraction kicker and the extraction

septum are shown schematically and in plan view in Fig. 14.15 and Fig. 14.16

.

Key parameters of the extraction kicker and the septum magnet are sum-

marized in Table 14.4, for the nominal trajectory shown in Fig. 14.17. The

required displacement of the beam at S, the entrance to the septum, is

XS = ΦK

√

βKβS sin µ = 19.3 mm (14.11)

where µ is the phase advance from the center of the kicker, and βK and βS are

the horizontal beta functions. Solving this equation shows that the required
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Figure 14.11: Plan view of the electrostatic injection inflector. Beam enters
at the right from the tandem Van de Graaf injector.

Figure 14.12: Apertures at downstream end of electrostatic inflector.

Y

1 mm15 mm

10 mm

X

18 mm

Figure 14.13: The green and blue ellipses in the schematic represent ±2.5σ
(rms) of the beam envelope at the upstream and downstream ends of the
inflector.
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Figure 14.14: Perspective view of extraction (foreground) and injection (back-
ground) interfaces.

Kicker

Septum Magnet

H+ Beam

BPM BCM WCM BPM

Figure 14.15: Schematic view of the extraction interface layout.

Figure 14.16: Plan view of the extraction interface layout.
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Extraction Kicker
Bend Angle [mrad] 5.48

Magnetic strength [Gm] 133
Magnetic length [m] 0.8

Magnetic field [G] 167
Gap [mm] 30

Current [A] 398
Rise time [ns] < 100

Flat top [ns] > 70
Fall time [ms] < 16
(Revolution Period [ns] 167)

Septum Magnet

Bend angle 6.5◦

Radius of curvature [m] 12.268

Length [m] 1.481
Magnetic field [G] 1983
Gap [mm] 12

Septum (Cu) thickness [mm] 4
Current [A] 1893

Half-sine pulse length [µs] 10
Ripple < 2%

Table 14.4: Extraction Kicker and Septum Magnet Parameters
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Figure 14.17: Nominal extraction trajectory of the beam leaving the syn-
chrotron.
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Figure 14.18: Extraction Septum Magnet

extraction kick angle is ΦK = 5.48 mr, requiring an integrated kick field of

0.0133 Tm. For a 0.8 m long kicker the required field is B = 167 Gauss. This

is delivered by a magnet with NI = 398 Ampere-turns, if the gap height is

g = 30 mm, since

B = µ0NI/g (14.12)

The current required in the septum magnet shown in Fig. 14.18 is also given

by Equation 14.12, only now B = 0.1983 T and the gap is taken to be

g = 0.012 m, so that NI = 1893 Amps. The apertures at the upstream end

of the septum magnet are shown in Fig. 14.19 and the ellipses representing

± 2.5 σ for the beam at its largest, for the minimum extraction energy of

60 MeV are shown in Fig. 14.20.

14.4 Delivery System Optics

The delivery system is composed of the extraction beam line, the switch

yard beam line, the transport beam line, gantry optical interface, and gantries.

The beam is extracted from the synchrotron by a fast kicker followed by a

septum magnet. The extraction line comes just after the septum magnet. Since
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Figure 14.19: Plan view of the upstream end of the septum magnet, and
septum magnet apertures.
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Figure 14.20: Schematic of the upstream end of the septum magnet, and
septum magnet apertures.
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the switch yard is a configuration of FODO cells, IBEFUMFO can be directly

applied in this case to make the optical matching between the extraction line

and the switch yard beam line. The extraction line is designed such that the

output lattice functions comply with equation 13.16 and also the dispersion is

zero outside the extraction line (see Fig. 14.21). Since the gantries all have an

identical design it is desirable to have the same lattice functions at the entrance

of these beam lines.The switch yard has been designed with this objective in

mind as a perfect periodic structure.

The transport lines take the beam from the switch yard to the different

rooms of the facility. The research room has two transport lines with bend-

ing angles that differ by 30 degrees. The fix beam room has one 45 degrees

transport line that goes to the vertical fixed beam line and two additional 90

degrees transport line. The transport lines that connect the switychyard with

the gantry are all identical and the same as the 45 degree transport lines used

in the the fix beam room.

The gantry requires axially symmetric optics at the point of rotation. A

special optical structure that we have named “gantry optical interface” has

been designed to achieve this objective by making the horizontal and vertical

beta function equal at the point of rotation and the alpha functions equal to

zero (see Fig 14.22). The matching is done by inserting 3 quadrupoles between

the transport line and the gantry. The distances between the quadrupoles and

the strengths of two of them are varied until the matching conditions are

satisfied
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Figure 14.21: The interface between the extraction line and the switch yard
simultaneously suppress the dispersion initiated by the septum magnet and
smoothly matches the beta functions to the FODO cells structure of the switch
yard.
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Figure 14.22: The distances and strengths of 3 quadrupoles before the rotation
point are set such that the alpha functions are equal to zero and the beta
functions are equal in both planes.
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Figure 14.23: The achromatic gantry is built with seven 30 degrees dipole.
Dispersion is match such that it is zero at the gantry output.

For the design of the gantry light weight and compactness is of highest

priority. The gantry dipole deflects the beam by 30 degrees instead of 22.5

degrees of the magnets used in the switchyard and the transport line, maximiz-

ing the “packing factor” (ratio of integrated dipole length to the total length).

Seven 30 degrees dipoles are used to built the gantry and only 4 quadrupole

power supplies. Lattice functions of the gantry can be seen in Fig. 14.23.
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Nominal Max. Variation
Qx 3.37 -0.063
Qy 3.39 -0.080
max βx(m) 5.79 0.265
max βy(m) 6.23 0.002
max ηx 2.01 0.034

Table 14.5: A variation of the quadrupole strengths by 2% lead to the changes
shown on the table. The variations are considered insignificant for operations
purposes.

14.4.1 Tolerances of the New Ring

It is neccesary to test this lattice against any possible change of the

quadrupole strength that might distort significantly the lattice functions, the

dispersion or the tunes. In order to do that, the quadrupoles strengths in the

arcs were varied about 2% from their nominal values. The maximum varia-

tion of tunes, dispersion and beta functions are summarized on Table 14.5.

The variations shown on Table 14.5 are considered insignificant for operation

purposes.

14.5 Magnet Considerations

The RCMS originally was designed to have 6 different dipole magnets

styles (see Table 14.6): a Chevron magnet used in the synchrotron ring, a C-

type magnet used in the switch yard and transport lines, an H-type rectangular

magnet used in the gantry, an H-type rectangular magnet used as a 6.5o magnet

in the extraction line, and two O-type rectangle magnet for the horizontal and
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vertical correctors respectively. There are also 2 different styles of quadrupoles,

one for the synchrotron and other for the gantry.

The Chevron magnet is a special kind of dipole built out 2 rectangular

bends. This procedure reduces the maximum excursion of the beam (beam

sagita) within the beam pipe and hence it is possible to use smaller beam pipes

[42].

In order to reduce costs, trajectory studies were done to determine the

feasibility of reducing the number of dipole styles. In particular, the possibility

of using the old synchrotron magnets as a switch yard magnets (C-type) is

studied in Fig 14.24. This Fig. shows the beam pipe and the beam itself

when the magnet is off (straight beam pipe) and the corresponding pictures

when the magnet is on (curved beam pipe) over the magnet iron. The pipes

fit exactly within the iron of the synchrotron dipole allowing this dipole to be

used as switch yard dipole also.

Similar studies have shown that it is also possible to use a 22.5 degrees

synchrotron dipole as the 6.5 degrees dipole (see Fig. 14.25) needed in the

extraction line.

The new synchrotron dipole as mentioned before, is a combined function

magnet with a bending angle of 25.71o and the same magnet is also a chevron

magnet as in the old version.

In summary, the number of style of magnets have been reduced from 6 to

5 (see Table 14.6) which will have a direct impact on the cost of the facility not

only in the design stage but also during commissioning and normal operation.
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Figure 14.24: The trajectories and beam pipes of the switch yard magnet
within the iron of the 22.5 degrees dipole showing that the beam can go through
the magnet even when it is off.
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Figure 14.25: The trajectory of the beam when the 22.5o magnet is used as
6.5o magnet. The 6.5o trajectory fits loosely within the pipe of the magnet.
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Magnet Style No (Before) No (After)

25.71o Chevrons 0 14

22.5o Chevrons 16 21

H-type (gantry) 35 35

H-type (6.5o) 1 0

C-type 22 0

O-type (Hor) 4 4

O-type (Ver) 4 4

Table 14.6: Comparison between the number of magnets needed before and
after doing the trajectory studies. Those studies show that C-type magnets
and 6.5 degree magnet can be replaced with combined function magnets.

System Cost Change
Magnets - 22.6 %
Inj. & Extr. -10.0 %
Power Supplies -6.5 %
Radio Frequency Cavities -50.0 %

Table 14.7: Cost change between some of the systems of the old design of the
RCMS and the corresponding ones to the most recent design.

14.6 Comparisons with Previous Designs

The previous versions of the RCMS used separated magnets for the dipoles

and quadrupoles in the arcs of the ring. The introduction of combined function

magnets in the new design has saved sixteen quadrupoles.

The switch yard was also redesigned with the aid of the IBEFUMFO

procedure leading to a perfectly periodic structure with a reduced number of

quadrupole. The total number of quadrupoles in the delivery system went

down from 175 quadrupoles to 139 quadrupoles.
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Taking into account the above considerations, the total cost of the design

and fabrication of all magnets has dropped by 22.6% as can be seen on Table

14.7.

Since the total number of magnets has been reduced, the requirements

on the power supplies are less and hence it has been possible to lower their

fabrication cost by 6.5% as shown on Table 14.7.

The RF system in the previous design were composed of two one gap

cavities powered by solid state amplifiers. Since the straight sections now

have a longer space available (1.8 m) it was possible to design a single cavity

of two gaps to provide the neccesary energy to the particles each turn. This

modification on the RF system then lower the fabrication cost of the cavities

by 50 % as indicated on Table 14.7.

The injection and extraction system have also benefited from the longer

straight sections. Since the electrostatic inflector used at injection and the

septum magnet used at extraction are now longer the voltage required for the

inflector and the magnetic field required for the septum magnet have each

been reduced by about one third. This reduces the cost of these systems in

the amount listed in Table 14.7.

14.7 Comparisons with other Medical Accel-

erators

Reference [41] makes a comparison of 4 different technologies for medi-

cal accelerators. Although the comparisons are based in parameters beyond
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Table 14.8: Magnet Pole Gap and Magnet Pole Tip Width for 3 Different
Facilities.

Facility Magnet Pole Gap Magnet pole tip width
[mm] [mm]

Loma Linda [45] 50 200
KUMPF [48] 67 340
RCMS [56] 30 60

the optical design is worth to mention some of the results. First, it is con-

cluded that the RCMS can achieve faster changes in the beam energy than any

other accelerator with a much smaller emittance, a moderate size an adequate

intensity for proton therapy.

Second, the energy of the beam can be easily varied in the required range

of energies by just firing the extraction kicker at different times. In contrast,

in the cyclotron the beam is extracted at maximum energy and reduced to

the desired energy by a variable thickness energy degrader. In this sense, the

delivered energy selection is variable, at the expense of a higher emittance

from multiple scattering, larger gantries, and a higher radio activation which

leads to higher shielding requirement.

From the optical point of view, the RCMS have a very small beam size

when compared to typical medical facilities already in operation like Loma

Linda or facilities in design stage like KUMPF (Kyoto University Medical Pro-

ton Facility) (see Table 14.8) and since the aperture size is directly correlated

with the magnet size the RCMS has smaller magnets when compared with

the other facilities. For example, the transverse section of the dipole magnets
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that is used in the KUMPF is 97X80 cm [48] while the transverse section of

the dipole magnets in the RCMS is only 48X24 cm. Since the RCMS magnets

are smaller than the ones employed in other facilities, the overall cost of the

RCMS optical lattice is also expected to be lower.

14.8 Conclusions

The overall optical lattice of the RCMS has been presented making spe-

cial emphasis in the IBEFUMFO algorithm employed to facilitate the design.

In particular, IBEFUMFO has made possible to increase the spacing of the

quadrupoles in the straight sections without increasing the beam size in the

arcs and with a modest increase of the beam size in the straight sections. The

increase of the spacing of the quadrupoles in the straight sections allows to use

small angles of extraction and also allow more space for the RF cavity which

reduces the cost of both the extraction system and the RF cavity.

IBEFUMFO has also been used in the design of the delivery optics, in

particular in the extraction line where the algorithm has been used to match

the incoming beta function of the ring to the beta functions of switch-yard, a

beam line made out of FODO cells and which feeds all the beam lines going

to the different rooms in the facility.

Particle trajectory studies inside the different magnet styles indicate that

it is possible to use the 22.5o Chevron magnet as a C-type magnet and as a

6.5 degree magnet. This reduces the number of magnets styles from 6 styles
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to 5 styles.

Comparisons of this design with previous designs show significant savings

not only in the RF and extraction system as was mentioned before but also in

the number of magnets to be employed in the facility.

Comparisons with other medical facilities has shown technological advan-

tages of the RCMS and most likely lower costs thank to the smaller magnets

of the RCMS.
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Chapter 15

Effect of the Eddy Current in
the beam of the RCMS

15.1 Introduction

The RCMS uses a relatively high repetition rate (30 hz) which raises con-

cerns about the eddy currents induced in the vacuum chamber and eventually

the effects that this Eddy current might have in the stability of the beam.

This Chapter evaluates several effects that the Eddy currents usually produce

like tune shifts and reduction of the dynamical apertures.

15.2 Magnetic Multipoles Generated by Eddy

Currents

The magnetic multipoles generated by Eddy currents have been studied

in detail in reference [50]. Calculation in this reference starts under the as-

sumption that an Eddy current can be seen as an infinite long filament of

current I inside two parallel iron plates with infinite permeability and separa-
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tion distance g. Application of the image current method allows to calculate

the magnetic field (H = Hy + iHx) at position z = x + iy produced by the

filament located at zc = xc + iyc as:

H =
I

4g

[

tanh
π(z − z∗c )

2g
+ coth

π(z − zc)

2g

]

. (15.1)

After Taylor expanding the previous equation we have:

B =
µ0I

4g

∞
∑

n=0

1

n!
(αn + βn)

(

π

2g

)2

zn (15.2)

where:

αn =
∂n tanh

(

z − πz∗c
2g

)

∂zn

∣

∣

∣

∣

∣

∣

z=0

(15.3)

βn =
∂n cosh

(

z − πz∗c
2g

)

∂zn

∣

∣

∣

∣

∣

∣

z=0

(15.4)

(15.5)

The current in terms of the magnetic field that originates such current is:

I =
∫

v.c.
JdA =

∫

v.c.
σḂxhds (15.6)

where J is the current density, σ is the electrical conductivity of the chamber

walls, Ḃ is the rate of change of the field, x is the distance measured from the

chamber center and h is the thickness of the chamber walls.

Now since the magnetic field can be written in function of its multipoles

components an and bn as:

B(z) = B0

(

1 +
∞
∑

n =0

(bn + ian)zn

)

(15.7)
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a[cm] 2 4 6
b2[1/m2] 0.160 0.502 0.670

Table 15.1: Sextupole components induced by Eddy currents in an elliptical
beam pipe for different values of the major semi-axes a

Eq. 15.2, Eq. 15.7 and Eq. 15.6 lead to:

bn + ian =
µ0σhḂ0

2πn!B0

(

π

2g

)n+1
∫

v.c.
x (αn + βn) ds (15.8)

The variables αn and βn can be calculated analytically and for the sextupole

case they are given by:

α2 = −2
tanh(−πz∗c

2g
)

(

cosh(−πzc

2g
)
)2 (15.9)

β2 = 2
coth(−πz∗c

2g
)

(

sinh(−πzc

2g
)
)2 (15.10)

(15.11)

The sextupoles components can now be found from Eq. 15.8 by numerical in-

tegration. Values of the b2 has been estimated in reference [50] for different

beam pipe shapes and sizes. In particular, the values of b2 for an elliptical

beam pipe of different major semi-axes have been tabulated on Table 2 of

such reference and only the sextupole component of such table has been re-

produced here for convenience on Table 15.1. The sextupoles depends on more

parameters besides a and they are:

h = 1mm,

σ−1 = 0.8µΩm,
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Ḃ/B = 30/s.

Since these parameters are either directly proportional or inversely pro-

portional to the sextupole strength (see Eq. 15.8) it is straightforward to scale

the values given on Table 15.1 to other different set of parameters.

The sextupole strength also depends on the minor axis of the ellipse b

through the integral of Eq. 15.8. According to reference [50] such dependence

is approximately inversely proportional.

Table 15.1 and the known relations of the different parameters allow to

quickly estimate the sextupole strength for the RCMS which has parameters:

a = 3cm

b = 1.5cm

h = 0.64mm,

σ−1 = 1.25µΩm,

Ḃ/B = 188.49/s,

leading to a sextupole strength of 0.687 T
m2 or an integrated sextupole strength

of 0.522 T
m

in each main dipole of the ring.
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15.3 Marylie Simulations

In order to evaluate the effect of the sextupole components in the beam

, particularly dynamic aperture a tune footprints, particles were tracked with

the software Marylie ([51]). Marylie uses a “map” that translate the initial

phase space coordinates into the corresponding phase space coordinates at the

end of the ring. Simulation of the particles going through many turns are done

by successively applying the mentioned maps.

Maps used by Marylie are built with the so called Lie transformations (

see for example [52],[53]) . The Lie transformations are defined as:

e:f : ≡
∞
∑

m=0

: f :m

m!
, (15.12)

where the Lie operator : f : is defined as:

: f : ≡
∑

i

(∂f/∂qi)(∂/∂pi) − (∂f/∂pi)(∂/∂qi). (15.13)

Any map can be approximated by:

M = e:f2:e:f3:e:f4:..., (15.14)

where fn is a homogeneous polynomial of degree n in the phase space variables.

The importance of the Lie transformations resides on the concept of sim-

plecticity. Orbits of charged particles are well described by Hamiltonian flows.

As a consequence any map used to translate phase space coordinates from

one place of the ring to another should comply with the so called symplectic
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condition. This condition can be mathematically express by:

M t(zin)JM(zin) = J for all zin (15.15)

where J is given by:

J =

(

0 I
−I 0

)

(15.16)

and I is the 3X3 identity matrix. Any Lie transformation is symplectic and

the product of Lie transformations is also symplectic therefore the maps built

out of Lie transformations are automatically symplectic. If this property and

Eq. 15.14 are combined one can conclude that a map built out of Lie transfor-

mations can be approximated to any order and the map is still symplectic.

This is no the case for Taylor expansions of the map in which a truncation

of the series unavoidable leads to a loss of simplecticity of the map since

coefficients of different orders of the expansion are dependent of each other

through the simplecticity condition. Since usually the particles has to be

tracked for large numbers of turns this loss of simplecticity even in a very

small amounts might lead to unphysical results.

15.3.1 Preparation of the Lattice and Main Dipole Split-

ting

The design of the lattice was done in the simulation program MAD [10].

It is then necessary to convert the different elements used in MAD to their

corresponding elements in the Marylie software. There are some few details

about this conversion. First the quadrupoles strengths in MAD were defined
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Sector Bend 1

Sector Bend n−1

Sector Bend n

General Bend In General Bend Out

Sector Bend 2

Figure 15.1: The main dipoles are divided in n sector bends and the multipolar
elements are inserted between them. The edges of the magnet are carefully
modeled with general bending magnets that allow individual pole phase rota-
tion of the faces of the magnet. Fringe fields in the edge are also added.

as the ratio between the real physical quadrupole strength and the rigidity

of the particle. In Marylie, the quadrupole strengths correspond numerically

to the physical quadrupole strengths. This means that the rigidity has to be

specified in Marylie.

Second, dipoles in Marylie are specified with different parameters than the

dipoles parameters used by MAD. In Marylie the dipoles are specified with a

bend angle and a magnetic field while in MAD the dipoles are specified with

a bend angle and a length.

Third, Marylie doesn’t have built in elements that allow to put sextupole

components in the dipoles. It is then, neccesary to divide the main dipoles

and place thin multipoles at the divisions in order to simulate the effect of the

sextupoles. The main body of the divided magnet will consist then of sector

bends with multipoles located at every common point between the mentioned

sector bends (see Fig. 15.1).
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Parameter After Direct Readjusted to get
Conversion MAD tunes

Def. Quad. Strength -0.0003344 -0.0003317
Foc. Quad. Strength 0.0003329 0.0003320
Tunex 0.3909710 0.3905060
Tuney 0.4562570 0.4304580

Table 15.2: Quadrupoles strengths of the multipoles inserted in the main
dipoles used in the Marylie Software. Direct conversion from the MAD lattice
leads to tunes that differ slightly from the design ones. Readjustment of the
quadrupole strengths in the third significant figure are then neccesary to bring
back the tunes to their original values.

Also quadrupole components have to be added to the main magnet since

the dipole are combined function magnets as explained in Chapter 14. This is

easily done with the inserted thin multipoles that support not only sextupole

but also quadrupole components and higher order multipole components.

The number of divisions in the dipole is determined by how much the

resultant map change when the number of divisions changes. Allowing a max-

imum change of 0.01% in the terms of the map, the number of division needed

turn out to be 1984.

Since the magnets has been designed with pole phase rotations special

care has to be taken at the edge of the magnets. The edges are built with

maps that represent magnets with pole phase rotation and maps that represent

fringe fields in sector bends.

Once the dipoles have been appropriately divided and the whole lattice

has been written in terms of Marylie elements, it is neccesary to make some

comparisons with MAD outputs like tunes and lattice functions.
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Comparison between the tunes given by Marylie and Mad lead to small

differences that start to be evident in the second significant figure (see Ta-

ble 15.3.1). Since the tunes are one of the most determinant parameters in

tracking simulations the quadrupole components of the dipole magnets were

slightly re-tuned until it was possible to achieve an agreement between the

MAD and Marylie tunes of at least 6 significant figures. The beta functions

produced by both packages were also compared as illustrated in Fig. 15.2. The

fractional differences between the output lattices produced for both packages

reaches values as big as 1 %.

15.3.2 Effect of the Sextupole Components on the Dy-
namic Aperture of the RCMS Ring

Before doing the tracking simulations neccesary to determine the dynamic

aperture of the ring, it is convenient to determine the general effect of the

sextupole in the phase space ellipses. Extensive tracking simulations were done

in Marylie for this purpose. In particular, the final distribution of particles on

an initial 4D 2-torus distribution for different sextupole strengths was studied

(see Fig. 15.3 and Fig. 15.4). Fig. 15.3 and Fig. 15.4 show some growth of

the phase space ellipses when the strength of the sextupole is increased. The

horizontal phase space ellipses on Fig. 15.3 tend also to get distorted as the

sextupole strength is increased. Negative values of the sextupole strengths

were also studied leading to phase space ellipses thickness growth even smaller

than the ones shown in Fig. 15.3 and Fig. 15.4.
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Figure 15.2: Computation of the fractional difference of beta functions between
MAD and Marylie. The black line corresponds to the fractional difference of
the horizontal beta functions while the red line corresponds to the fractional
difference of the vertical beta functions.
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Figure 15.3: Horizontal phase space ellipses at one location of the ring after
tracking for 62530 turns with different integrated sextupole strengths. The
nominal sextupole strength of 0.522 T/m is represented by the red ellipse.
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Figure 15.4: Horizontal phase space ellipses at one location of the ring after
tracking for 62530 turns with different integrated sextupole strengths. The
nominal sextupole strength of 0.522 T/m is represented by the red ellipse.
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Sext. Str. Qx’ Qy’ r
[T/m] [mm]
-0.924 91.56 -9.20 10.2
-0.522 64.70 11.05 10.9
-0.231 45.32 25.66 14.1

0 29.90 37.28 10.9
0.231 14.49 48.90 10.8
0.522 -4.89 63.51 11.2
0.924 -31.76 83.75 8.7

Table 15.3: The radius r for which particles start to get lost in the tracking
simulations is found as function of the sextupole strength. The chromaticities
Qx′ and Qy′ are also calculated in each run.

Having evaluated the effect of the sextupoles in the phase space ellipses

the dynamic apertures of the ring can now be evaluated. This can be done by

finding the biggest ellipse allowed in the ring before particles start to get lost.

This is a process that involved tracking of particles several times in the ring,

every time with a different size particle distribution.

The process was repeated for all the sextupoles strengths studied before

(positive and negative) with results that are summarized on Table 15.3. The

maximum beam size of the RCMS is expected to be as big as 3 mm at one

sigma(see Chapter 14). Even in the worst case when the sextupole strength is

+0.924 (which is almost double the nominal strength) , the maximum trans-

verse radius allowed for the particles before they start to get lost ( r = 8.7mm)

is just enough to keep most of the particles inside the beam pipe during the

acceleration cycle of the RCMS.
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15.3.3 Footprints

Non linear components in the ring can introduce some dependence of the

particles tune with the amplitude of oscillation. In the RCMS it is important

to know if the tune spread caused by the eddy currents and other non linear

effects can excite unwanted resonances in the ring.

In order to calculate such tune spread a uniform distribution of particles in

the Jx-Jy space (see Fig. 15.5) were tracked for 62530 turns with the Marylie

software. The tunes of each individual particle were determined using the

orbit information provided by the 62530 simulated turns. The particles are

then sorted out according to their horizontal and vertical actions, Jx and Jy,

given place to Fig. 15.6 and Fig. 15.7. These two graphs are done with the

nominal sextupole strength of 0.522 T/m and a bigger strength of 0.924 T/m.

The biggest tune spread in the horizontal plane is about 8.15e−4 and 2.55e−4

in the vertical plane both of them for the extreme situation of a sextupole

strenght of 0.924 T/m. These tune spreads are no large enough to move the

nominal tune into the strongest resonances of one half or one third and hence

the operation of the machine is stable within the sextupole range considered

in this study.

15.4 Conclusions

The sextupole component induced by the eddy currents in the beam pipe

has a visible effect in the phase space distribution of the particles but the
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Figure 15.5: Amplitude distribution of particles before doing tracking to eval-
uate tune footprints.
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Figure 15.6: Horizontal tune distribution of the particles after tracking for
62530 turns.

222



0 1e−06 2e−06 3e−06 4e−06 5e−06
Jy[m]

0.43033

0.43043

0.43052

0.43063

0.43073

0.43083

qy

Tune Spread 
Vertical  Plane

0.52 T/m
0.92 T/m

Figure 15.7: Vertical tune distribution of the particles after tracking for 62530
turns.
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dynamic aperture is not sensitive to this sextupole component in the range of

sextupole strenghts used in this study. Even in the very extreme case in which

the sextupole component is almost double the nominal strenght, the dynamic

aperture although reduced is big enough to hold most of the particles of the

beam.

It was also shown through Marylie simulations that the tune spread of the

particles due to their different amplitudes is not significant and hence it doesn’t

represent any risk for the stable operation of the machine. The addition of

sextupoles correctors to the RCMS design doesn’t seem neccesary according

to the results that has been presented in this chapter.
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Appendix A

Multipolar Expansion

The horizontal kick ∆x′ is produced either by misalignments and/or mag-

netic field errors that in general can be represented by a variation of the mag-

netic field ∆B. The relation between ∆Bx , the horizontal variation of the

magnetic field and ∆By , the vertical variation of the magnetic field with the

horizontal and vertical kicks are given by:

∆x′ = − l

ρ
= −e∆Byl

p
,

(A.1)

∆y′ =
l

ρ
=
e∆Bxl

p
,

where ρ is the magnetic bending radius, e is the electron charge, l is the length

of the magnet and p is the momentum of the particle.

The magnetic field can be expanded in function of its multipole compo-

nents with the expression ( see for example [2]):

∆By + i∆Bx = B0

∑

n

(bn + ian)(x+ iy)n (A.2)
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where an the skew multipolar component and bn the normal multipolar com-

ponent. Eq. A.2 leads to:

∆x′ = A1y − B1x + 2A2xy +B2(−x2 + y2) +B3(−x3 + 3xy2) +

A3(3x
2y − y3) + A4(4x

3y − 4xy3) +B4(−x4 + 6x2y2 − y4) + ...

(A.3)

∆y′ = A1x+B1y + 2B2xy + A2(x
2 − y2) + A3(x

3 − 3xy2) +

B3(3x
2y − y3) +B4(4x

3y − 4xy3) + A4(x
4 − 6x2y2 + y4) + ...

where An = eB0lan

p
and Bn = eB0lbn

p
.
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Appendix B

Equivalent Multipolar
Coefficients in RHIC IRs

It has been shown in Appendix A that a magnetic error at a particular

magnet can be expressed in function of its multipolar components. Using

the technique developed in this dissertation is only possible to measure the

equivalent magnetic error for a group of magnets rather than for a single

magnet. In such a case is still possible to expand the magnetic error in function

of its multipoles components but they have to be redefined. The idea is that

the contribution of a particular multipoles in all magnets contained in the set

or package that is being studied can be expressed in a single multipole that

will produce exactly the same effect (at least outside the package of magnets)

when located at some particular point s0.

Deductions for the equivalent skew quadrupole component, quadrupole

gradient component, sextupole components and octupole components for a

set of three magnets (RHIC triplets) were done in Mathematica Notebooks.
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The following sections show calculation for all the cited cases.

B.1 Calculation of the Equivalent Skew

Quadrupole for a RHIC triplet

Skew quadrupole errors A1
a, A1

b and A1
c are assumed in each of the 3

magnets of the triplet. Such skew errors will start betatron oscillations (single

turn analysis).

x(s) = sin(ψx − ψxa)A1
a ya

√

βx

√

βxa +

sin(ψx − ψxb)A1
b yb

√

βx

√

βxb + (B.1)

sin(ψx − ψxc)A1
c yc

√

βx

√

βxc

where ψx is short notation for ψx(s), the horizontal phase advance, ψxi is the

phase advance in i quadrupole of the triplet (i can be either a, b or c), yi the

vertical beam position in the i quadrupole of the triplet, βx a short notation

for βx(s) the horizontal beta functions and βxi is the horizontal beta function

in the i quadrupole of the triplet.

Here, it was assumed that the skew error in each quadrupole acts in a

single point of the quadrupole or that the quadrupole is very thin compared

to the total length of the triplet.

Assuming J in the vertical plane doesn’t change significantly in the length

occupied by the set of magnets the vertical positions of the beam at each

magnet ya, yb and yc are given by:

ya = −
√

2Jβya sin(ϕ− ψya)
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yb = −
√

2Jβyb sin(ϕ− ψyb) (B.2)

yc = −
√

2Jβyc sin(ϕ− ψyc)

where ϕ is some arbitrary phase where the vertical oscillation started. The

other variables have the same meaning as their corresponding ones in the

horizontal plane.

Substituting Eq. B.3 in Eq. B.2 and assuming that the phase advance for

all the magnets in the package is the same (for RHIC triplets ψya ∼ ψyb ∼ ψyc)

it follows that:

x(s) = −
√

2
√
J sin(ψx − ψxb) sin(ϕ− ψyb)

√

βx

(B.3)

(A1
a
√

βx1

√

βy1 + A1
b
√

βxb

√

βyb + A1
c
√

βxc

√

βyc),

from Eq. B.4 it is easy to see that it is possible to write:

x(s) = A1
eye

√

βeβx sin(ψx(s) − ψxb) (B.4)

where ye is the vertical position of the beam at the some position inside the

triplet and is given by:

ye =
√

2Jβye sin(ϕ− ψyb) (B.5)

where βye is the vertical beta function at the longitudinal position s0 Finally

the equivalent skew quadrupole at s0 is given by:

A1
e =

A1
a
√
βxa

√

βya + A1
b
√
βxb

√

βyb + A1
c
√
βxc

√

βyc

√
βxe

√

βye

(B.6)
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A1
e is symmetric in x and y as can be seen in the previous formula and hence

A1
e has the same value in both planes.

B.2 Calculation of the Equivalent Skew

Quadrupole for a RHIC IR

Since equivalent skew quadrupole errors can be assigned to each triplet

the calculation of the equivalent skew quadrupole error at the IR is reduced

to calculate the equivalent skew error of two skew quadrupoles which can be

done following exactly the same procedure as in the previous section. This

leads to:

A1
IR =

A1
L
√

βx
Lβy

L + A1
R
√

βx
Rβy

R

√

βx
Lβy

L
(B.7)

here, A1
IR is the equivalent skew gradient for the whole IR, A1

L and A1
R are

the equivalent skew gradients for the left and right triplets respectively, and

the beta function with superscripts L and R are evaluated at the position of

the left and right skew quadrupole corrector respectively. Since,

βx
Lβy

L = βx
Rβy

R (B.8)

then,

A1
IR = A1

L + A1
R (B.9)

Therefore the equivalent skew quadrupole error for the whole IR is equal to

the sum of each individual triplet quadrupole errors.

This also means that it is possible to locally decouple an IR with only

one skew quadrupole corrector and the strength of such corrector should be
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equal to the sum of strengths required in the skew quadrupole correctors in

each side of the IR.

B.3 Calculation of the Equivalent Quadrupole

Gradient for a RHIC triplet

Gradient errors B1
a, B1

b and B1
c are assumed in all magnet of the triplet.

Such gradients (single turn analysis) will give rise to betatron oscillations given

by:

x(s) =
√

βx sin(ψx − ψxa) xa

√

βxaB1
a +

√

βx sin(ψx − ψxb) xb

√

βxbB1
b + (B.10)

√

βx sin(ψx − ψxc) xc

√

βxcB1
c

where the notation is the same used in the previous sections. Assuming that

J doesn’t change significantly in the the triplet it is possible to write:

xa = −
√

2Jβxa sin(ϕ− ψxa)

xb = −
√

2Jβxb sin(ϕ− ψxb) (B.11)

xc = −
√

2Jβxc sin(ϕ− ψxc)

where ϕ is some arbitrary phase where the biggest source of betatron oscillation

starts. Since the phases at the triplets are almost the same, Eq. B.11 in

Eq. B.12 leads to:

x(s) = −
√

2
√
J
√

βx sin(ϕ− ψxb) sin(ψ − ψxb)

231



(B.12)

∗ (βxa B1
a + βxbB1

b + βxcB1
c)

substitution of

xe
√

βxe

= −
√

2J sin(ϕ− ψxb) (B.13)

in Eq. equi:grad:orb finally leads to:

x(s) =
√

βxβxeB
xe
1 xe sin(ψxa − ψx) (B.14)

where the equivalent gradient B1
xe is given by:

B1
xe =

βxaB1
a + βxbB1

b + βxcB1
c

βxe

(B.15)

Following a completely analogous process the equivalent gradient error B1
ye

in the vertical plane is given by:

B1
ye =

βya
B1

a + βyb
B1

b + βyc
B1

c

βye

(B.16)

Even though gradient errors of individual quadrupoles are the same in both

planes the equivalent gradients for the whole triplet are different due to the

different values of the beta functions in both planes.
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B.4 Calculation of the Equivalent Normal

Sextupole for a RHIC triplet

Betatron oscillations produced by B2
a, B2

b and B2
c, the normal sextupoles

errors in each of the quadrupoles of a RHIC triplet are given by:

x(s) = 2B2
a sin(ψx − ψxa) (−xa

2 + ya
2)
√

βx

√

βxa

+2B2
b sin(ψx − ψxb)

(

−xb
2 + yb

2
)
√

βx

√

βxb (B.17)

+2B2
c sin(ψx − ψxc)

(

−xc
2 + yc

2
)
√

βx

√

βxc

where we have used the same notation as in the previous sections.

Assuming J doesn’t change significantly when going through the interac-

tion region it is possible to write:

xa =
√

2Jxβxa sin(ψxa − ϕx)

xb =
√

2Jxβxb sin(ψxb − ϕx)

(B.18)

ya =
√

2Jyβya
sin(ψya

− ϕy)

xb =
√

2Jyβyb
sin(ψyb

− ϕy)

where the variables Jx the action in the horizontal plane, Jy the action in the

vertical plane, ϕx the phase associated with the horizontal betatron oscillation

and ϕy the phase associated with the vertical betatron oscillation have been

introduced.

If the phase advance is the same in all quadrupoles of the triplet then
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Eq. B.18 can be simplified to:

x(s) = −4 J sin(ϕx − ψxb)
2 sin(ψx − ψxb)

√

βx

(

B2
a βxa

3

2 +B2
b βxb

3

2 +B2
c βxc

3

2

)

+4 J sin(ψx − ψxb) sin(ϕy − ψyb)
2
√

βxB2
a
√

βxa βya + (B.19)

+4 J sin(ψx − ψxb) sin(ϕy − ψyb)
2
(

B2
b
√

βxb βyb +B2
c
√

βxc βyc

)

As in the other cases, the formula should expressed in function of beam po-

sitions xe and ye at the place where the equivalent coefficients want to be

calculated.

x(s) = −
sin(ψx − ψxb) xe

2
√
βx

(

B2
a βxa

3

2 +B2
b βxb

3

2 +B2
c βxc

3

2

)

βxe

(B.20)

+
sin(ψx − ψxb) ye

2
√
βx

(

B2
a
√
βxa βya +B2

b
√
βxb βyb +B2

c
√
βxc βyc

)

βye

It is then now possible to write these expressions in function of their equivalent

normal sextupoles:

x(s) = 2 sin(ψx − ψxb) (−B2
xaxe

2 +B2
xby2

e)
√

βxβ(s) (B.21)

where B2
xa and B2

xb are the equivalent normal sextupole coefficients in the x

plane and they are given by:

B2
xa =

B2
a βxa

3

2 +B2
b βxb

3

2 +B2
c βxc

3

2

βxe

3

2

(B.22)

B2
xb =

B2
a
√
βxa βya +B2

b
√
βxb βyb +B2

c
√
βxc βyc√

βxe βye
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The betatron equations in the vertical plane are:

y(s) = 2B2
a sin(ψy − ψya) xa ya

√

βy

√

βya +

2B2
b sin(ψy − ψyb) xb yb

√

βy

√

βyb + (B.23)

2B2
c sin(ψy − ψyc) xc yc

√

βy

√

βyc

Same assumptions as for the horizontal plane are done here to obtain:

y(s) = 4 J sin(ϕx − ψxb) sin(ϕy − ψyb) sin(ψy − ψyb)

(B.24)

∗
√

βy

(

B2
a
√

βxa βya +B2
b
√

βxb βyb +B2
c
√

βxc βyc

)

Expressing the Eq. B.25 in function of their beam positions at the place where

the equivalent coefficients want to be calculated results in:

y(s) =
√

βy(s)βyeB2
yxeye sin(ψy(s) − ψb) (B.25)

where the equivalent normal sextupole in the y plane B2
y is given by:

B2
y =

B2
a
√
βxa βya + B2

b
√
βxb βyb +B2

c
√
βxc βyc√

βxe dβye

(B.26)

This coefficient is exactly the same as B2
xb which means that 2 independent

coefficients are enough to completely describe an equivalent normal sextupole

coefficient.
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B.5 Calculation of the Equivalent Skew Sex-

tupole for a RHIC Triplet

Calculation for the skew sextupole coefficients are very similar to the pre-

ceding ones. The equivalent skew sextupole coefficient in the horizontal plane,

A2
x, exactly resembles the algebra done for the equivalent normal sextupole

coefficient in the horizontal plane and is given by:

A2
x =

A2
a βxa

√

βya + A2
b βxb

√

βyb + A2
c βxc

√

βyc

βxe

√

βye

(B.27)

In the vertical plane two different equivalent coefficients arise and they are

equal to:

A2
ya =

A2
a βxa

√

βya + A2
b βxb

√

βyb + A2
c βxc

√

βyc

βxe

√

βye

(B.28)

A2
yb =

A2
a βya

3

2 + A2
b βyb

3

2 + A2
c βyc

3

2

βye

3

2

As for the equivalent normal sextupole coefficients, there are two identical

coefficients and then only two coefficients are needed to completely characterize

an equivalent skew sextupole coefficient.

B.6 Equivalent Octupole Coefficients

The calculation of the equivalent coefficients for octupoles is very similar

to the previous calculations and only the results will be shown here.
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The equivalent skew octupole coefficients in the x plane are given by:

A3
xb = −





A3
a
√
βxa βya

3

2 + A3
b
√
βxb βyb

3

2 + A3
c
√
βxc βyc

3

2

√
βxe βye

3

2





(B.29)

A3
xa = −





A3
a βxa

3

2

√

βya + A3
b βxb

3

2

√

βyb + A3
c βxc

3

2

√

βyc

βxe

3

2

√

βye





while the equivalent skew octupole coefficients in the y plane are given by:

A3
ya = −





A3
a βxa

3

2

√

βya + A3
b βxb

3

2

√

βyb + A3
c βxc

3

2

√

βyc

βxe

3

2

√

βye





(B.30)

A3
yb = −





A3
a
√
βxa βya

3

2 + A3
b
√
βxb βyb

3

2 + A3
c
√
βxc βyc

3

2

√
βxe βye

3

2





Since 2 pairs of these coefficients are equal only 2 coefficients are needed to

completely describe the equivalent skew octupole coefficients. Similarly for the

equivalent normal octupole coefficients in the x plane:

B3
xa = −

(

B3
a βxa

2 +B3
b βxb

2 +B3
c βxc

2

βxe
2

)

(B.31)

B3
xb = −

(

B3
a βxa βya +B3

b βxb βyb +B3
c βxc βy3

βxe βye

)

and in the y plane:

B3
ya = −

(

B3
a βxa βya +B3

b βxb βyb +B3
c βxc βyc

βxe βye

)
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(B.32)

B3
yb = −

(

B3
a βya

2 +B3
b βyb

2 +B3
c βyc

2

βye
2

)

Since two of the coefficients are equal only 3 coefficients are needed.

In summary, to completely describe the equivalent octupole coefficients

5 variables are needed. It is shown in the Section 5.5 that the beam based

method to find linear and nonlinear coefficients is able to discern up to 4

different unknowns. Determination of octupoles would require further studies

to find if a simple modification of the technique to find linear and non linear

error would work in this case.

B.7 Multipolar Expansion for an Equivalent

Magnetic Kick in a RHIC Triplet

As a summary of the previous sections it was found that 3 independent

coefficient were needed to completely describe the equivalent linear errors (un-

like the case of a single magnet where only two coefficients are needed), and

a total of four independent coefficients to completely describe the equivalent

sextupole errors (unlike the case of a single magnet where only 2 coefficients

are needed). According to the previous result the equivalent magnetic kick can

be expanded in its equivalent multipolar components in the following way:

∆x′eq = Aeq
1 y0 − Bx

1x0 + 2A2
xx0y0 − B2

xax2
0 +B2

yy2
0 + ...

(B.33)
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∆y′eq = Aeq
1 x0 +By

1y0 + 2B2
yx0y0 + A2

xx2
0 − A2

yby2
0 + ...

This will be the expression used to evaluate errors from the orbit measurements

as is described in Chapters 5 and Chapter 7.
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Appendix C

Fits of Orbit Data to the
Betatron Equation in RHIC
Arcs

It is clear from Chapter 2 that the biggest lattice errors in the early

commissioning of RHIC were present at the Interaction Regions. As was shown

in Chapter 3 and Chapter 5, it is possible to determine the magnitude of such

error from the orbit in the arc immediately before the IR under study an the

orbit in the arc immediately after the mentioned IR.

Three different methods were implemented in C++ programming lan-

guage to do the mentioned task.

The first method is the simplest one can imagine. Since action and phase

are roughly constant in the arcs, an average of actions and phases are good

estimates of the real action and phase in the arcs. Those averages are then

used in:

∆x′ =

√

√

√

√

2JR + 2JL − 4 ∗
√
JR

√
JLcos(ψR − ψL)

β(s0)
(C.1)
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where ∆x′ is a quantity that can be related with the errors in the IR as was

discussed in Chapter 3.

The subroutine for this first method has been developed in such a way

that it is able to reject values beyond 2σ from the average. In this way it is

possible to eliminate a significant amount of noise. The name of the subroutine

is FITTED POS because was initially created to find the position of the beam

at the skew quadrupole corrector by fitting the data in the arc previous to the

IR.

The second subroutine (BP CORRECTOR) uses the average angle found

with the previous subroutine and vary the action until the model data is as

close as possible to the real data. This procedure was born from the ob-

servation that the phase graphs have much less variations or noise than the

corresponding actions graphs. Different to the previous subroutine, this sub-

routine uses a simple formula (Eq. C.2) to determine the amplitude of the

orbit in a particular arc and there are no rejection of points. That makes this

algorithm faster than the previous one but more susceptible to errors.

amplitude =

∑

i yif(xi)

f(xi)2

(C.2)

=

∑

i yi

√

β(i) sin(mux(i) − ϕ)

β(i) sin2(mux(i) − ϕ)

The third subroutine (NEW FIT) fits the data to a model:

x(s) = a sin(mux(i)) + b sin(mux(i)) (C.3)
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where a and b are the variables to fit the data. As before standard formulas

are used to find the variables from the data and there is no rejection algorithm.

Those formulas are:

a = (xs ∗ c2 − sc ∗ xc)/(s2 ∗ c2 − sc ∗ sc)

(C.4)

b = (s2 ∗ xc− xs ∗ sc)/(s2 ∗ c2 − sc ∗ sc)

where:

xs =
∑

i

yi

√

β(i) sin(mux(i))

xc =
∑

i

yi

√

β(i) cos(mux(i))

s2 =
∑

i

β(i) sin2(mux(i)) (C.5)

c2 =
∑

i

β(i) cos2(mux(i))

sc =
∑

i

β(i) sin(mux(i)) cos(mux(i))

The three subroutines were used to analyze an orbit in order to evaluate how

close was the fit in the 3 cases to the real data. With this purpose in mind,

an unnormalized χ2 was defined as:

χ2 = (yi − f(xi))
2 (C.6)

The analysis were performed in the vertical plane where the signal is

stronger. Arcs that goes from IR12 to IR2 and IR2 to IR4 were analyzed

independently. The three subroutines were used to fit the orbit data to the
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Figure C.1: The orbit data (weak signals)in the arc that goes from IR8 to
IR10 of the previous figure is compared with the modeled orbits obtained with
three different methods.

corresponding model in each case and the χ2 was evaluated. χ2 was exactly

the same (within computer precision) when the results of all 3 subroutines

were compared independently in each arc.

Weaker signals, on the other hand, have slight variations in the value of

χ2 which is evident in Fig C.1 where orbit in arc that goes from IR8 to IR10 is

compared with all three different fitting procedures. The marginal variations

in χ2 can be seen on Table C.1

It is no clear by know if such a small variation in χ2 will have a significant
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Routine χ2 Description
FITTED POS 0.0701 Average of action

and phase in the arcs
BP CORRECTOR 0.0701 Amplitude of model is

fitted to orbit with
constant phase obtained
from the previous routine

NEW FIT 0.0640 The equation a sin(mux) + b cos(mux)
is fitted to orbit data.

Table C.1: Effectiveness of the fit for 3 different procedures on the same orbit
data.

effect in the determination of linear or non linear errors. I suspect that the

effect in the linear errors might be insignificant but no in the nonlinear errors.

It easy (although not straightforward) to test this effect in the determination

of linear errors. The effect on nonlinear errors determination is at this time

uncertain since the method has not been completely developed.

Weak signals were used to do some of the analysis in Chapter 3 and

Chapter 5. Future experiment will not require weak signals and then there is

no any difference in using any or other subroutine to do the fits.
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Appendix D

The Orbit Bump Method

In order to evaluate the amount of coupling at the IRs, orbit bumps were

done around several triplets during the RHIC 2000 run ([16] and [19]). Orbit

bumps in either the vertical or the horizontal plane induces an oscillation in

the perpendicular plane (see Fig. D.1) . A horizontal orbit bump will induce

the vertical betatron oscillation

y =
βy(s)

2 sin πνy

Ax
√

βdc
x

cos(|ψy| − πνy)
∫

triplet

k
√

βxβyds, (D.1)

where νy is the betatron tune, βy(s) are the vertical beta functions, Ax is

the orbit excursion at the position of the horizontal dipole corrector in the

triplet,βdc
x is the horizontal beta function at the position of the triplet hori-

zontal dipole corrector, κ is the coupling error function along the triplet that

must be integrated with weight
√

βxβy, the square root of the product of the

beta functions in both planes along the triplet, and ψy is the phase advance.

Since all the vertical BPMs have the same beta functions, the rms value
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Figure D.1: a) A closed orbit bump about the left triplet of IR8 is built in
the horizontal plane. b) Lattice representation of RHIC. c) Coupling in the
triplet induces an orbit oscillation in the vertical plane. The rms value of this
betatron oscillation can be used to calculate the skew quadrupole error.
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of Eq. D.1 is given by:

yrms =

√

βbpm
y Ax

2
√

2| sin πνy|
√

βdc
x

∫

κ
√

βxβyds = λAx (D.2)

Since Ax and yrms are quantities that can be measured κ can be determined

to finally find the quadrupole integrated corrector strength required to com-

pensate for the coupling error as follows:

(kl)sc = − λ
√

βsc
x

√

βsc
y

2
√

2βdc
x |sinπνy|
√

βbpm
y

. (D.3)

The following table summarize the estimated corrector strengths that were

performed in both rings of RHIC before the correction had taken place. These

IR Triplet Blue corr.str. Yellow corr.str.
Blue/Yellow (10−3 1/m) (10−3 1/m)

IR2 I1/O1 −0.22 ± 0.16 0.30
O2/I2 1.23 ± 0.15 0.76

IR6 I5/O5 0.39 −0.94 ± 0.08
O6/I6 0.12 ±0.36 ± 0.02

IR8 O7/I7 −0.84 0.36 ± 0.04
I8/O8 1.32 −1.10

Table D.1: Calculated IR skew corrector strengths.

results can be compared with the ones obtained in Table 3.2. In order to do

that, left and right triplet strengths in Table D.1 should be added according

to Eq. B.9. We then have that at IR6 the sum of the skew triplet errors leads

to 0.51 which is reasonably close to the integrated value of 0.61 in Table 3.2.

Similarly for IR8 the sum of the individual skew quadrupole errors is equal to

0.48 compared to the integrated strength 0.67 obtained in Table 3.2. Finally
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IR2 individual skew quadrupole triplet errors add to 1.01 compared to 0.99 in

Table 3.2.
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Appendix E

Common problems found in the
Action and Phase Analysis of
Difference Orbits

It is shown in this dissertation how the action and phase analysis can be

used to evaluate errors at the IRs and to make calibration of the IR correc-

tors.However, before doing any estimate from the action and phase obtained

from the BPM measurements it is neccesary to make some preliminary analy-

sis. Table E.1 is an example of the procedure that must be done before doing

any numerical estimate.

Corr. Fit Phase bx BPMs b3 BPMs
(Deg.) Left Right

bo3-th10 Ok. 42 Yes Yes No
bo2-th16 Ok. 35 Yes Yes No
bo6-tv15 Ok. 76 Yes Yes No
bo7-tv11 Poor 63 Yes Yes No

Table E.1: Preliminary analysis of difference orbits used to evaluate triplet
errors at 8’o clock IR. Only analysis in the horizontal plane are shown.
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The first column contains the name of dipole corrector used to excite the

betatron oscillation or the desired shift of the closed orbit.

The second column indicates the quality of the fit of the data to the

model, before and after the IR. The quality of the fit is evaluated visually.

The fit of Fig. 3.1 is considered excellent in both arcs, before and after the IR

while the fit of Fig. E.1 is considered poor. The third column shows a phase

that measure the distance in degrees from the skew quadrupole corrector to

the closest maximum of the orbit. The ideal distance is closer to 0 degrees as

was discussed in Section 5.4.

The fourth column indicates if the central BPMs of the IR (bxs) are

present or not. If they are not present it is not possible to make error estima-

tions individually for each triplet of the IR.

The fifth column indicates if the two BPMs just outside the triplets (b3s)

are present or not. These BPMs are the ones that are used to estimate the

beam position at the correctors. If any of the BPMs fail then the closest BPM

to the original one and closer to the IP (b1) is used instead.

The orbit shown in Fig. E.2 shows the ideal situation when all the six

BPMs are working at 8 o’clock. In Fig. E.1 only three of those BPMs are

working which makes impossible to calculate errors for the each triplet indi-

vidually and all that it is possible to obtain is an overall error estimation for

the whole IR.
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Figure E.1: a) Orbit measurements and corresponding modeling in two RHIC
arcs. Each arc is fitted independently. b) Lattice representation of two RHIC
arcs. The arcs correspond to the group of bars at each side of the smaller
group which, in turns, represent the triplet magnets at the IR’s. c) Action
analysis of the orbit in a). d) Phase analysis of the orbit in a).
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Figure E.2: a) Detail of a difference orbit showing all six BPMs used at the
8 o’clock RHIC IR. The central BPMs (bxs) are necessary to make individual
estimates of the triplet errors. The b3s BPMs are used to estimate the beam
positions at the correctors. If any of these BPMs fails, the closer b1 will be
used instead. b) Left and right quadrupole triplets of the 8 o’clock RHIC
IR (long bars).The short bars represent the Dx magnets used to control the
collision of the beams. c) Action analysis of the orbit in a). b) Phase analysis
of the orbit in a).
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Appendix F

Skew Quadrupole Correctors

The skew quadrupole correctors used at RHIC IRs are small quadrupoles

that have been rotated 45 degrees counterclockwise as seen from the down-

stream face of the magnet (see Fig. F.1). The skew quadrupole can be turn on

by a software program called the Ramp Editor Manager. The values use by

the Ramp Editor Manager to set the skew quadrupole correctors, skre, have

the following relation with the physical quantities of the skew quadrupole cor-

rector:

skre =
B′

Bρ
∆s (F.1)

The sign convention here is important. A positive value of skre will produce

the configuration of magnetic lines shown in Fig. F.1. Keeping the previous

convention the magnetic kick , for example, in the x plane generated after

setting a skew quadrupole corrector to some value skre is given by:

∆x′ = −skrey (F.2)
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Figure F.1: View of the magnetic lines of a focusing quadrupole rotated 45
degrees in the counterclockwise direction from the downstream face of the
magnet.
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since

∆x′ = − B′

Bρ
sin(2φ)∆sy (F.3)

where y is the vertical position of the beam at place where the skew quadrupole

corrector is located and sin(2φ) = 1 since the skew quadrupole is rotated π/4

as shown in Fig. F.1.

It is neccesary to relate Eq. F.2 with the formalism develop in these book.

Considering only the coupling term in Eq. 1.56 the magnetic kick, ∆x′, can

also be written as:

∆x′ = Acorr
1 y (F.4)

where Acorr
1 is the skew quadrupole component due the corrector. Comparing

Eq. F.2 and Eq. F.4 it is found that:

Acorr
1 = −skre (F.5)

The calibration experiment in Chapter 8, and the Chapter 4 make use of

Eq. F.5 to establish relations between measured values and the skew quadrupole

corrector strengths.
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